高数篇(二)-- 傅里叶变换 VS 拉普拉斯变换

        傅立叶变换以及拉普拉斯变换本质上都是积分变换,而傅立叶变换是拉普拉斯变换的特殊形式,Z变换则是拉普拉斯变换的离散形式。每种变换都有其应用价值,傅立叶变换在信号处理的频域分析中提供了强大的数学工具,而拉普拉斯变换在电子学、控制工程、航空航天等领域提供了建模、分析的数学分析工具;Z变换则将这些变换进而落地为数字实现提供数学理论依据。

1 欧拉公式

        欧拉公式将三角函数与复指数函数巧妙地关联了起来,有下面的形式:
e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta} =\cos \theta +i\sin \theta eiθ=cosθ+isinθ

        其中, e e e 为自然常数, i i i 为虚数, θ \theta θ 则是以弧度为单位的参数(变量)。

        下面给出一种常用的方式(级数)验证欧拉公式,在实数域里,有下面的麦克劳林级数:

e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + ⋯ sin ⁡ x = x − 1 3 ! x 3 + 1 5 ! x 5 + ⋯ cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯ e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\cdots \\ \quad \\ \sin x=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots \\ \quad \\ \cos x=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+\cdots ex=1+x+2!1x2+3!1x3+sinx=x3!1x3+5!1x5+cosx=12!1x2+4!1x4+
        把 x = i θ x = i\theta x=iθ 带入 e x e^x ex 中有:
e i θ = 1 + i θ + ( i θ ) 2 2 ! + ( i θ ) 3 3 ! + ( i θ ) 4 4 ! + ( i θ ) 5 5 ! + ( i θ ) 6 6 ! + ( i θ ) 7 7 ! + ( i θ ) 8 8 ! + ⋯ = 1 + i θ − θ 2 2 ! − i θ 3 3 ! + θ 4 4 ! + i θ 5 5 ! − θ 6 6 ! − i θ 7 7 ! + θ 8 8 ! + ⋯ = ( 1 − θ 2 2 ! + θ 4 4 ! − θ 6 6 ! + θ 8 8 ! − ⋯   ) + i ( θ − θ 3 3 ! + θ 5 5 ! − θ 7 7 ! + ⋯   ) = cos ⁡ θ + i sin ⁡ θ \begin{aligned} e^{i\theta} & = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \frac{(i\theta)^6}{6!} + \frac{(i\theta)^7}{7!} + \frac{(i\theta)^8}{8!} + \cdots \\ & = 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \frac{\theta^6}{6!} - \frac{i\theta^7}{7!} + \frac{\theta^8}{8!} + \cdots \\ & = \left( 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \frac{\theta^8}{8!} - \cdots \right) + i\left(\theta-\frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots \right) \\ &=\cos\theta + i\sin\theta \end{aligned} eiθ=1+iθ+2!(iθ)2+3!(iθ)3+4!(iθ)4+5!(iθ)5+6!(iθ)6+7!(iθ)7+8!(iθ)8+=1+iθ2!θ23!iθ3+4!θ4+5!iθ56!θ67!iθ7+8!θ8+=(12!θ2+4!θ46!θ6+8!θ8)+i(θ3!θ3+5!θ57!θ7+)=cosθ+isinθ

        当参数 x x x 等于 π \pi π 的时候,欧拉公式可简化为:
e i π + 1 = 0 e^{i\pi}+1 =0 e+1=0
        上式将5个微妙且看似无关的数学符号 e 、 i 、 π 、 0 、 1 e、i、\pi、0、1 eiπ01 紧密地联系了起来,其美妙之处让人称绝。

拓展:


2 傅里叶变换

2.1 推导

(1)傅里叶级数
        对于周期函数 f ( x ) f(x) f(x),根据傅里叶级数公式有:

f ( x ) = a 0 + ∑ n = 1 ∞ ( a n cos ⁡ ( 2 π n T x ) + b n sin ⁡ ( 2 π n T x ) ) , a 0 ∈ R f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{2 \pi n}{T} x\right)+b_{n} \sin \left(\frac{2 \pi n}{T} x\right)\right), a_{0} \in \mathbb{R} f(x)=a0+n=1(ancos(T2πnx)+bnsin(T2πnx)),a0R

        通过欧拉公式,可以得到:
{ e i x = c o s x + i s i n x e − i x = c o s x − i s i n x    ⟹    { s i n x = e i x − e − i x 2 i c o s x = e i x + e − i x 2 \begin{cases} e^{ix}= cosx+isinx \\ e^{-ix}= cosx-isinx \\ \end{cases} \implies \begin{cases} sinx = \frac{e^{ix} - e^{-ix}}{2i} \\ cosx = \frac{e^{ix} + e^{-ix}}{2} \\ \end{cases} {eix=cosx+isinxeix=cosxisinx{sinx=2ieixeixcosx=2eix+eix
        将上面的等式代入傅里叶级数公式,可以得到:
f ( x )    = C ⋅ 1 + a 1 cos ⁡ ( 2 π T x ) + b 1 sin ⁡ ( 2 π T x ) + . . . + a n cos ⁡ ( 2 π n T x ) + b n sin ⁡ ( 2 π n T x ) = c 0 ⋅ e 0 + c 1 ⋅ e i 2 π T x + c − 1 ⋅ e i 2 π ( − 1 ) T x + . . . + c n ⋅ e i 2 π n T x + c − n ⋅ e i 2 π ( − n ) T x f(x)\;= C\cdot1+a_{1}\cos \left(\frac{2 \pi }{T} x\right)+b_{1}\sin \left(\frac{2 \pi }{T} x\right)+...+a_{n}\cos \left(\frac{2 \pi n}{T} x\right)+b_{n}\sin \left(\frac{2 \pi n}{T} x\right)\\ \quad \\ \qquad=c_{0}\cdot{e^0}+c_{1}\cdot{e^{i \frac{2\pi }{T}x}}+c_{-1}\cdot{e^{i \frac{2\pi (-1)}{T}x}}+...+c_{n}\cdot{e^{i \frac{2\pi n}{T}x}}+c_{-n}\cdot{e^{i \frac{2\pi (-n)}{T}x}} f(x)=C1+a1cos(T2πx)+b1sin(T2πx)+...+ancos(T2πnx)+bnsin(T2πnx)=c0e0+c1eiT2πx+c1eiT2π(1)x+...+cneiT2πnx+cneiT2π(n)x
        从而可以得到:
f ( x ) = ∑ n = − ∞ ∞ c n ⋅ e i 2 π n x T ( 1 ) \displaystyle f(x)=\sum _{{n=-\infty }}^{\infty}c_{n}\cdot e^{{i{\tfrac {2\pi nx}{T}}}} \quad (1) f(x)=n=cneiT2πnx1
        这里的 C n C_n Cn 是一个复数,一般称为傅里叶系数,平时对频域的变换,一般改变的就是 C n C_n Cn,那么如何求 C n C_n Cn

        由公式(1)可以得到:
c k ⋅ e i 2 π k x T = f ( x ) − ∑ n = − ∞ , n ≠ k ∞ c n ⋅ e i 2 π n x T c_{k}\cdot e^{{i{\tfrac {2\pi kx}{T}}}} = f(x) -\sum_{{n=-\infty, n\not=k}}^{\infty}c_{n}\cdot e^{{i{\tfrac {2\pi nx}{T}}}} ckeiT2πkx=f(x)n=,n=kcneiT2πnx
        两边同时乘以 e − i 2 π k x T e^{{-i{\tfrac {2\pi kx}{T}}}} eiT2πkx,可以得到:
c k = f ( x ) ⋅ e − i 2 π k x T − ∑ n = − ∞ , n ≠ k ∞ c n ⋅ e i 2 π ( n − k ) x T c_{k} = f(x) \cdot e^{{-i{\tfrac {2\pi kx}{T}}}} -\sum_{{n=-\infty, n\not=k}}^{\infty}c_{n}\cdot e^{{i{\tfrac {2\pi (n-k)x}{T}}}} ck=f(x)eiT2πkxn=,n=kcneiT2π(nk)x

        两边积分可以得到:
∫ 0 T c k d t = ∫ 0 T [ f ( x ) ⋅ e − i 2 π k x T − ∑ n = − ∞ , n ≠ k ∞ c n ⋅ e i 2 π ( n − k ) x T ] d t T c k = ∫ 0 T f ( x ) ⋅ e − i 2 π k x T d t − ∑ n = − ∞ , n ≠ k ∞ ∫ 0 T c n ⋅ e i 2 π ( n − k ) x T d t \int_{0}^{T} c_{k}dt = \int_{0}^{T} [f(x) \cdot e^{{-i{\tfrac {2\pi kx}{T}}}} -\sum_{{n=-\infty, n\not=k}}^{\infty}c_{n}\cdot e^{{i{\tfrac {2\pi (n-k)x}{T}}}} ]dt \\ \quad Tc_{k} = \int_{0}^{T} f(x) \cdot e^{{-i{\tfrac {2\pi kx}{T}}}} dt - \sum_{{n=-\infty, n\not=k}}^{\infty} \int_{0}^{T} c_{n}\cdot e^{{i{\tfrac {2\pi (n-k)x}{T}}}} dt 0Tckdt=0T[f(x)eiT2πkxn=,n=kcneiT2π(nk)x]dtTck=0Tf(x)eiT2πkxdtn=,n=k0TcneiT2π(nk)xdt

        下面计算 ∫ 0 T c n ⋅ e i 2 π ( n − k ) x T d t \int_{0}^{T} c_{n}\cdot e^{{i{\tfrac {2\pi (n-k)x}{T}}}} dt 0TcneiT2π(nk)xdt
∫ 0 T c n ⋅ e i 2 π ( n − k ) x T d t = T c n 2 π i ( n − k ) e i 2 π ( n − k ) x T ∣ 0 T = T c n 2 π i ( n − k ) [ e 2 π i ( n − k ) − e 0 ] = 0 \int_{0}^{T} c_{n}\cdot e^{{i{\tfrac {2\pi (n-k)x}{T}}}} dt \\ \quad = \frac{Tc_{n}}{2\pi i(n-k)} e^{{i{\tfrac {2\pi (n-k)x}{T}}}}|_{0}^{T} \\ \quad = \frac{Tc_{n}}{2\pi i(n-k)}[e^{2\pi i(n-k)} - e^0] = 0 0TcneiT2π(nk)xdt=2πi(nk)TcneiT2π(nk)x0T=2πi(nk)Tcn[e2πi(nk)e0]=0
        由欧拉公式可知, e 2 π i ( n − k ) = c o s ( 2 π ∗ 整数 ) + i s i n ( 2 π ∗ 整数 ) = 1 e^{2\pi i(n-k)} = cos(2\pi*整数) + isin(2\pi*整数)=1 e2πi(nk)=cos(2π整数)+isin(2π整数)=1,所以可以得到:
c n = 1 T ∫ x 0 x 0 + T f ( x ) ⋅ e − i 2 π n x T   d x \displaystyle c_{n}={\frac{1}{T}}\int _{{x_{0}}}^{{x_{0}+T}}f(x)\cdot e^{{-i{\tfrac {2\pi nx}{T}}}}\ dx cn=T1x0x0+Tf(x)eiT2πnx dx

        当 T → ∞ T \to \infty T 时,取 ω = 2 π T \omega = \frac{2\pi}{T} ω=T2π,定义 F ( ω ) F(\omega) F(ω) 为:
{ F ( ω ) = ∫ − ∞ ∞ f ( x )   e − i ω x   d x c n = 1 T F ( n ω ) \begin{cases} F(\omega)=\int_{-\infty}^\infty f(x)\ e^{-i\omega x}\,dx \\ c_{n}={\frac{1}{T}}F(n\omega) \\ \end{cases} {F(ω)=f(x) exdxcn=T1F()

        最后可以得到:
{ f ( x ) = 1 2 π ∫ − ∞ ∞ F ( ω )   e i ω x   d ω F ( ω ) = ∫ − ∞ ∞ f ( x )   e − i ω x   d x \begin{cases} f(x) = \frac{1}{2\pi}\int_{-\infty}^\infty F(\omega)\ e^{i\omega x}\,d\omega \\ F(\omega)=\int_{-\infty}^\infty f(x)\ e^{-i\omega x}\,dx\\ \end{cases} {f(x)=2π1F(ω) exdωF(ω)=f(x) exdx

f ( x ) ⇄ F − 1 F F ( ω ) f(x) \overset{\mathscr{F}}{\underset{\mathscr{F^{-1}}}{\rightleftarrows}} F(\omega) f(x)F1FF(ω)

         f ( x ) 和 F ( ω ) f(x) 和 F(\omega) f(x)F(ω) 称为傅立叶变换对,函数 F ( i ω ) F(i\omega) F() 称为 f ( x ) f(x) f(x) 的傅里叶变换或傅里叶积分。
        注: F \mathscr{F} F F \mathcal{F} F 都表示傅里叶变换算子,只是书写的方式不同。

        傅里叶级数和傅里叶变换的根本区别是被操作的函数是否为周期函数:当被操作函数的周期趋向于无穷大,傅里叶级数“密集”成傅里叶变换;当被操作函数的周期从无穷大变成有限值时,傅里叶变换退化成傅里叶级数。所以,其实傅里叶级数只是傅里叶变换的一种特殊情况,或者说傅里叶变换是傅里叶级数的推广。

2.2 收敛性

        狄利赫利条件:

  1. f ( x ) f(x) f(x) 绝对可积,即
    ∫ − ∞ + ∞ ∣ f ( x ) ∣ d x < ∞ \int_{-\infty}^{+\infty} \lvert f(x) \rvert dx < \infty +f(x)∣dx<
  2. 在任何有限区间内, f ( x ) f(x) f(x) 只有有限个最大值和最小值。
  3. 在任何有限区间内, f ( x ) f(x) f(x) 有有限个不连续点,并且在每个不连续点都必须是有限值。

2.3 性质

表1 傅里叶变换的性质
性质公式表示
线性定理 - 齐次性 F [ a f ( t ) ] = a F ( ω ) \mathscr{F}[af(t)] = aF(\omega) F[af(t)]=aF(ω)
线性定理 - 叠加性 F [ f 1 ( t ) ± f 2 ( t ) ] = F 1 ( ω ) ± F 2 ( ω ) \mathscr{F}[f_1(t)\pm f_2(t)]=F_1(\omega)\pm F_2(\omega) F[f1(t)±f2(t)]=F1(ω)±F2(ω)
时移定理 F [ f ( t − t 0 ) ] = e − i ω t 0 F ( ω ) \mathscr F[f(t-t_0)]=e^{-i\omega t_0}F(\omega) F[f(tt0)]=et0F(ω)
频移定理 F [ e j ω 0 t f ( t ) ] = F ( ω − ω 0 ) \mathscr F[e^{j {\omega}_0t}f(t)]=F(\omega- {\omega}_0) F[ejω0tf(t)]=F(ωω0)
共轭定理 F [ f ∗ ( t ) ] = F ∗ ( − ω ) \mathscr{F}[f^{*}(t)]=F^{*}(-\omega) F[f(t)]=F(ω)
时间反转 F [ f ( − t ) ] = F ( − ω ) \mathscr{F}[f(-t)]=F(-\omega) F[f(t)]=F(ω)
相似定理 F [ f ( a t ) ] = 1 ∣ a ∣ F ( ω a ) \mathscr F[f(at)]=\frac1{|a|}F\left(\frac\omega a\right) F[f(at)]=a1F(aω)
卷积定理 F [ ∫ 0 t f 1 ( t − τ ) f 2 ( τ ) d τ ] = F 1 ( ω ) F 2 ( ω ) \mathscr{F}[\int_{0}^{t}f_1(t-\tau)f_2(\tau)d\tau]=F_1(\omega)F_2(\omega) F[0tf1(tτ)f2(τ)dτ]=F1(ω)F2(ω)
相乘 F [ f 1 ( t ) ⋅ f 2 ( t ) ] = 1 2 π F 1 ( ω ) ∗ F 2 ( ω ) \mathscr{F}[f_1(t)\cdot f_2(t)]=\frac{1}{2\pi}F_1(\omega)*F_2(\omega) F[f1(t)f2(t)]=2π1F1(ω)F2(ω)
时域微分 F [ d n f ( t ) d t n ] = ( i ω ) n F ( ω ) \mathscr F\left[\frac{d^nf(t)}{dt^n}\right]=(i\omega)^nF(\omega) F[dtndnf(t)]=()nF(ω)
积分 F [ ∫ − ∞ t f ( t ) d t ] = 1 i ω F ( ω ) + π F ( 0 ) δ ( ω ) \mathscr{F}[\int_{-\infty}^{t}f(t)dt]=\frac{1}{i\omega}F(\omega)+\pi F(0)\delta(\omega) F[tf(t)dt]=1F(ω)+πF(0)δ(ω)
频域微分 F [ t f ( t ) ] = i d F ( ω ) d ω \mathscr{F}[tf(t)]=i\frac{dF(\omega)}{d\omega} F[tf(t)]=idωdF(ω)
对称性 若 F [ f ( t ) ] = F ( ω ) ,则 F [ F ( t ) ] = 2 π f ( − ω ) 若\mathscr{F}[f(t)]= F(\omega),则\mathscr{F}[F(t)] = 2\pi f(-\omega) F[f(t)]=F(ω),则F[F(t)]=2πf(ω)
帕萨瓦尔定理 ∫ − ∞ + ∞ ∣ f ( t ) ∣ 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω \int_{-\infty}^{+\infty}|f(t)|^2dt = \frac{1}{2\pi}\int_{-\infty}^{+\infty}|F(\omega)|^2d{\omega} +f(t)2dt=2π1+F(ω)2dω
表2 基本的傅里叶变换变换对
信号傅里叶变换傅里叶级数系数(若为周期的)
∑ k = − ∞ + ∞ a k e i k ω 0 t \sum_{k = -\infty}^{+\infty}a_ke^{ik {\omega}_0 t} k=+akeikω0t 2 π ∑ k = − ∞ + ∞ a k δ ( ω − k ω 0 ) 2\pi\sum_{k = -\infty}^{+\infty}a_k\delta(\omega-k\omega_0) 2πk=+akδ(ωkω0) a k a_k ak
e i k ω 0 t e^{ik {\omega}_0 t} eikω0t 2 π δ ( ω − ω 0 ) 2\pi\delta(\omega-\omega_0) 2πδ(ωω0) a 1 = 1 , a k = 0 , 其余为 k a_1=1, a_k = 0, 其余为 k a1=1,ak=0,其余为k
cos ⁡ ω 0 t \cos{\omega}_0 t cosω0t π [ δ ( ω − ω 0 ) + δ ( ω + ω 0 ) ] \pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)] π[δ(ωω0)+δ(ω+ω0)] a 1 = a − 1 = 1 2 , a k = 0 , 其余为 k a_1= a_{-1} = \frac{1}{2}, a_k = 0, 其余为 k a1=a1=21,ak=0,其余为k
sin ⁡ ω 0 t \sin{\omega}_0 t sinω0t π i [ δ ( ω − ω 0 ) − δ ( ω + ω 0 ) ] \frac{\pi}{i}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)] iπ[δ(ωω0)δ(ω+ω0)] a 1 = − a − 1 = 1 2 i , a k = 0 , 其余为 k a_1= -a_{-1} = \frac{1}{2i}, a_k = 0, 其余为 k a1=a1=2i1,ak=0,其余为k
1 1 1 2 π δ ( ω ) 2\pi\delta(\omega) 2πδ(ω) a 0 = 1 , a k = 0 , k ≠ 0 a_0= 1, a_k = 0, k \neq 0 a0=1,ak=0,k=0
周期方波: f ( t ) = { 1 , if  ∣ t ∣ < T 1 0 , if  T 1 < ∣ t ∣ ≤ T 2 周期方波:f(t) = \begin{cases} 1, & \text {if $|t| < T_1$} \\ 0, & \text{if $T_1 < |t| \leq \frac{T}{2}$} \end{cases} 周期方波:f(t)={1,0,if ∣t<T1if T1<t2T ∑ k = − ∞ + ∞ 2 sin ⁡ k ω 0 T 1 k δ ( ω − k ω 0 ) \sum_{k = -\infty}^{+\infty} \frac{2\sin k{\omega}_0 T_1}{k} \delta(\omega-k\omega_0) k=+k2sinkω0T1δ(ωkω0) ω 0 T 1 π s i n c ( k ω 0 T 1 π ) = s i n k ω 0 T 1 k π \frac{\omega_0 T_1}{\pi}sinc(\frac{k{\omega}_0 T_1}{\pi})=\frac{sink{\omega}_0 T_1}{k\pi} πω0T1sinc(πkω0T1)=sinkω0T1
∑ n = − ∞ + ∞ δ ( t − n T ) \sum_{n=-\infty}^{+\infty}\delta(t-nT) n=+δ(tnT) 2 π T ∑ n = − ∞ + ∞ δ ( ω − 2 π k T ) \frac{2\pi}{T}\sum_{n=-\infty}^{+\infty}\delta(\omega - \frac{2\pi k}{T}) T2πn=+δ(ωT2πk) a k = 1 T a_k=\frac{1}{T} ak=T1
f ( t ) = { 1 , if  ∣ t ∣ < T 1 0 , if  ∣ t ∣ > T 1 f(t) = \begin{cases} 1, & \text {if $|t| < T_1$} \\ 0, & \text{if $|t| > T_1$} \end{cases} f(t)={1,0,if ∣t<T1if ∣t>T1 sin ⁡ ω T 1 ω \frac{\sin{\omega T_1}}{\omega} ωsinωT1 − -
sin ⁡ W t π t \frac{\sin{Wt}}{\pi t} πtsinWt F ( ω ) = { 1 , if  ∣ ω ∣ < W 0 , if  ∣ ω ∣ > W F(\omega) = \begin{cases} 1, & \text {if $|\omega| < W$} \\ 0, & \text{if $|\omega| > W$} \end{cases} F(ω)={1,0,if ∣ω<Wif ∣ω>W − -
δ ( t ) \delta(t) δ(t) 1 1 1 − -
u ( t ) u(t) u(t) 1 i ω + π δ ( ω ) \frac{1}{i\omega}+\pi\delta(\omega) 1+πδ(ω) − -
δ ( t − t 0 ) \delta(t-t_0) δ(tt0) e − i ω t 0 e^{-i\omega t_0} et0 − -
e − a t u ( t ) e^{-at}u(t) eatu(t) 1 a + i ω \frac{1}{a+i\omega} a+1 − -
t e − a t u ( t ) te^{-at}u(t) teatu(t) 1 ( a + i ω ) 2 \frac{1}{(a+i\omega)^2} (a+)21 − -
t n − 1 ( n − 1 ) ! e − a t u ( t ) \frac{t^{n-1}}{(n-1)!}e^{-at}u(t) (n1)!tn1eatu(t) 1 ( a + i ω ) n \frac{1}{(a+i\omega)^n} (a+)n1 − -

        具体推导,可以阅读:傅里叶变换性质

        对傅里叶变换的形象理解,建议阅读下面两篇博文,从时域频域的角度讲解傅里叶变换:深入浅出的讲解傅里叶变换,另外一篇,从数学角度分析对傅里叶变换的理解,如何理解傅里叶变换


3 拉普拉斯变换

        在古典意义下的傅里叶变换存在的条件是 f ( x ) f(x) f(x) 除了满足狄拉克雷条件以外,还要在 ( − ∞ , + ∞ ) (−\infty, +\infty) (,+) 上绝对可积,许多函数都不满足这个条件。在很多实际问题中,存在许多以时间 t t t 为自变量的函数,这些函数根本不需要考虑 x < 0 x < 0 x<0 的情况。为了解决这个该问题,就需要通过一些变换使得这些函数变得符合傅里叶变换的条件。

3.1 推导

        设一个函数 ϕ ( x ) \phi(x) ϕ(x),其在 x < 0 x <0 x<0 的区间上没有定义,也不满足在 [ 0 , + ∞ ) [0, +\infty) [0,+) 上绝对可积的限制。我们可以通过下面的变换使其满足限制:

  1. 乘以单位阶跃函数
    u ( t ) = { 0 , t < 0 1 , t > 0 u(t) = \begin{cases}0,\quad t<0\\1,\quad t>0\end{cases} u(t)={0,t<01,t>0
            这样在 t < 0 t < 0 t<0 的情况就完全不用考虑。
  2. 乘以一个衰减函数 e − σ t e^{-\sigma t} eσt
    lim ⁡ x → + ∞ f ( x ) e − σ x = 0 , σ ∈ R \lim_{x \rightarrow +\infty}f(x)e^{-\sigma x}=0,\sigma\in R x+limf(x)eσx=0,σR
            很多时候 ϕ ( x ) \phi(x) ϕ(x) [ 0 , + ∞ ) [0, +\infty) [0,+) 不可积是因为增长过快,所以我们乘以一个 e e e 的负指数函数使其强制衰减。

        这样傅里叶变换就变成了:

F ( ω ) = ∫ 0 + ∞ f ( x ) u ( x ) e − σ x e − i ω x d x = ∫ 0 + ∞ f ( x ) e − ( σ + i ω ) x d x F(\omega)=\int_{0}^{+\infty}f(x)u(x)e^{-\sigma x}e^{-i\omega x}dx=\int_{0}^{+\infty}f(x)e^{-(\sigma+i\omega) x}dx F(ω)=0+f(x)u(x)eσxexdx=0+f(x)e(σ+)xdx

        令 s = σ + i ω s=\sigma+i\omega s=σ+,则函数 f ( x ) f(x) f(x) 的拉氏变换为:
F ( s ) = ∫ 0 + ∞ f ( x ) e − s x d x = L { f ( x ) } F(s)=\int_{0}^{+\infty}f(x)e^{-s x}dx = \mathscr{L}\{f(x)\} F(s)=0+f(x)esxdx=L{f(x)}

        称 F ( s ) F(s) F(s) f ( x ) f(x) f(x) 的拉普拉斯变换,记作 F ( s ) = L [ f ( x ) ] F(s)=\mathscr{L}[f(x)] F(s)=L[f(x)],其中, s s s 是复变量。 F ( s ) F(s) F(s) 称为时间域内的函数 f ( x ) f(x) f(x) 的象函数, f ( t ) f(t) f(t) 称为 F ( s ) F(s) F(s) 的原函数。

        函数 F ( s ) F(s) F(s) 的拉氏逆变换:
f ( x ) = 1 2 π j ∫ c − i ∞ c + i ∞ F ( s ) e s x d s = L − 1 { F ( s ) }        x > 0 f(x)=\frac{1}{2\pi j} \int_{c -i\infty}^{c +i\infty}F(s)e^{sx}ds=\mathscr{L}^{-1}\{F(s)\}\ \ \ \ \ \ x>0 f(x)=2πj1cic+iF(s)esxds=L1{F(s)}      x>0
f ( x ) ⇄ L − 1 L F ( s ) f(x) \overset{\mathscr{L}}{\underset{\mathscr{L^{-1}}}{\rightleftarrows}} F(s) f(x)L1LF(s)

        注: L \mathscr{L} L L \mathcal{L} L 都表示拉普拉斯变换算子。

        拉普拉斯变换存在的条件:当 x ≥ 0 x \geq 0 x0 时, f ( x ) f(x) f(x) 有定义,所以这里采用的是单边拉普拉斯变换;由于拉氏变换是通过负指数函数来使得原函数强制衰减,所以要求原函数 f ( x ) f(x) f(x) t → ∞ t \to \infty t 时增长速度不能超过指数函数,一般也不会有函数的增长速度可以超过指数函数了,所以这个限制其实非常宽泛。

拓展:

        傅里叶变换是将函数分解到频率不同、幅值恒为1的单位圆上;拉普拉斯变换是将函数分解到频率幅值都在变化的圆上。因为拉普拉斯变换的基有两个变量,因此更灵活,适用范围更广。

3.2 性质

表3 拉普拉斯变换的常用定理
性质公式表示
线性定理 - 齐次性 L [ a f ( t ) ] = a F ( s ) \mathscr{L}[af(t)] = aF(s) L[af(t)]=aF(s)
线性定理 - 叠加性 L ( f 1 ( t ) ± f 2 ( t ) ) = F 1 ( s ) ± F 2 ( s ) \mathscr{L}(f_1(t)\pm f_2(t))=F_1(s)\pm F_2(s) L(f1(t)±f2(t))=F1(s)±F2(s)
微分定理 - 一阶导 L [ d f ( t ) d t ] = s F ( s ) − f ( 0 ) \mathscr{L}[\frac{df(t)}{dt}]=sF(s)-f(0) L[dtdf(t)]=sF(s)f(0)
微分定理 - 二阶导 L [ d 2 f ( t ) d t 2 ] = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 ) \mathscr{L}[\frac{d^2f(t)}{dt^2}]=s^2F(s)-sf(0)-f'(0) L[dt2d2f(t)]=s2F(s)sf(0)f(0)
微分定理 - n阶导 L [ d n f ( t ) d t n ] = s n F ( s ) − ∑ k = 1 n s n − k f k − 1 ( 0 ) \mathscr{L}[\frac{d^n f(t)}{dt^n}]=s^nF(s)-\sum_{k=1}^{n}s^{n-k}f^{k-1}(0) L[dtndnf(t)]=snF(s)k=1nsnkfk1(0)
积分定理 - 一重积分 L [ ∫ f ( t ) d t ] = F ( s ) s + [ ∫ f ( t ) d t ] t = 0 s \mathscr{L}[\int f(t)dt]=\frac{F(s)}{s}+\frac{[\int f(t)dt]_{t=0}}{s} L[f(t)dt]=sF(s)+s[f(t)dt]t=0
积分定理 - 二重积分 L [ ∬ f ( t ) ( d t ) 2 ] = F ( s ) s 2 + [ ∫ f ( t ) d t ] t = 0 s 2 + [ ∬ f ( t ) ( d t ) 2 ] t = 0 s \mathscr{L}[\iint f(t)(dt)^2]=\frac{F(s)}{s^2}+\frac{[\int f(t)dt]_{t=0}}{s^2}+\frac{[\iint f(t)(dt)^2]_{t=0}}{s} L[f(t)(dt)2]=s2F(s)+s2[f(t)dt]t=0+s[f(t)(dt)2]t=0
积分定理 - n重积分 L [ ∫ … ∫ ⏞ n f ( t ) ( d t ) n ] = F ( s ) s n + ∑ k = 1 n [ ∫ … ∫ ⏞ k f ( t ) ( d t ) k ] t = 0 s n − k + 1 \mathscr{L}[\overbrace{\int \dotso \int}^{n}f(t)(dt)^n]=\frac{F(s)}{s^n}+\sum_{k=1}^n\frac{[\overbrace{\int \dotso \int}^{k}f(t)(dt)^k]_{t=0}}{s^{n-k+1}} L[ nf(t)(dt)n]=snF(s)+k=1nsnk+1[ kf(t)(dt)k]t=0
位移定理 - 时域中 L [ f ( t − T ) 1 ( t − T ) ] = e − T s F ( s ) \mathscr{L}[f(t-T)1(t-T)]=e^{-Ts}F(s) L[f(tT)1(tT)]=eTsF(s)
位移定理 - 复域中 L [ f ( t ) e − a t ] = F ( s + a ) \mathscr{L}[f(t)e^{-at}]=F(s+a) L[f(t)eat]=F(s+a)
终值定理 lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) \lim\limits_{t \to \infty}f(t)=\lim\limits_{s \to 0}sF(s) tlimf(t)=s0limsF(s)
初值定理 lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s F ( s ) \lim\limits_{t \to 0}f(t)=\lim\limits_{s \to \infty}sF(s) t0limf(t)=slimsF(s)
卷积定理 L [ ∫ 0 t f 1 ( t − τ ) f 2 ( τ ) d τ ] = F 1 ( s ) F 2 ( s ) \mathscr{L}[\int_{0}^{t}f_1(t-\tau)f_2(\tau)d\tau]=F_1(s)F_2(s) L[0tf1(tτ)f2(τ)dτ]=F1(s)F2(s)
相似定理 L [ f ( a t ) ] = 1 ∣ a ∣ f ( s a ) \mathscr{L}[f(at)]=\frac{1}{\vert a\vert}f(\frac{s}{a}) L[f(at)]=a1f(as)
表4 常用函数的拉普拉斯变换表
原函数f(t)象函数F(s)原函数f(t)象函数F(s)
δ ( t ) \delta(t) δ(t)1 1 − e − a t 1-e^{-at} 1eat a s ( s + a ) \frac{a}{s(s+a)} s(s+a)a
∑ n = 0 ∞ δ ( t − n T ) \sum_{n=0}^{\infty}\delta(t-nT) n=0δ(tnT) 1 1 − e − T s \frac{1}{1-e^{-Ts}} 1eTs1 e − a t − e − b t e^{-at}-e^{-bt} eatebt b − a ( s + a ) ( s + b ) \frac{b-a}{(s+a)(s+b)} (s+a)(s+b)ba
1 ( t ) 1(t) 1(t) 1 s \frac{1}{s} s1 sin ⁡ ω t \sin \omega t sinωt ω s 2 + ω 2 \frac{\omega}{s^2+\omega^2} s2+ω2ω
t t t 1 s 2 \frac{1}{s^2} s21 cos ⁡ ω t \cos \omega t cosωt s s 2 + ω 2 \frac{s}{s^2+\omega^2} s2+ω2s
t 2 2 \frac{t^2}{2} 2t2 1 s 3 \frac{1}{s^3} s31 e − a t sin ⁡ ω t e^{-at}\sin \omega t eatsinωt ω ( s + a ) 2 + ω 2 \frac{\omega}{(s+a)^2+\omega^2} (s+a)2+ω2ω
t n n ! \frac{t^n}{n!} n!tn 1 s n + 1 \frac{1}{s^{n+1}} sn+11 e − a t cos ⁡ ω t e^{-at}\cos \omega t eatcosωt s + a ( s + a ) 2 + ω 2 \frac{s+a}{(s+a)^2+\omega^2} (s+a)2+ω2s+a
e − a t e^{-at} eat 1 s + a \frac{1}{s+a} s+a1 a t / T a^{t/T} at/T 1 s − ( 1 / t ) ln ⁡ a \frac{1}{s-(1/t)\ln a} s(1/t)lna1
t n e − a t t^ne^{-at} tneat n ! ( s + a ) n + 1 \frac{n!}{(s+a)^{n+1}} (s+a)n+1n! t n t^{n} tn n ! s n + 1 \frac{n!}{s^{n+1}} sn+1n!

拓展:


4 数学变换

        数学上的变换是指数学函数从原向量空间变换为自身向量空间,或另一个向量空间,或对于集合 X X X 到其自身(比如线性变换)或从 X X X 到另一个集合 Y Y Y 的可逆函数。常见的变换有:旋转变换、镜像变换、平移变换……

        数学中还有很多数学变换,其本质都可以看成是将函数 f ( x ) f(x) f(x) 利用变换因子进行的一种数学映射,其变换结果其函数的自变量有可能还是原来的几何空间,或许会变成其他的向量空间。

        从数学的角度来看,不论傅里叶变换还是拉普拉斯变换,都是由于原问题求解比较困难,而通过一定的积分变换,就可以在变换域内进行求解。这种类似的解决问题的思路,还有对数变换、解析几何的坐标变换、高等代数中的线性变换;在积分中的变量代换和积分运算化简;在微分方程中所作的自变量或未知函数的变换;复变函数的保角变换。当然变换要可逆,也就是核函数要可逆。

        从数学的角度理解积分变换就是通过积分将一个函数从其原始函数空间映射到另一个函数空间,其中原始函数的某些属性可能比原始函数空间更容易表征和操作。 通常可以使用逆变换将变换后的函数映射回到原始函数空间,这样的变换是可逆变换;也可以理解成是算内积,然后就变成一个函数向另一个函数的投影。假定对于函数为自变量 t t t 的函数 f ( t ) f(t) f(t),都类似具有以下的范式:
{ F ( s ) = ∫ a b f ( t ) ⋅ K ( t , s ) d t f ( t ) = ∫ c d F ( s ) K − 1 ( s , t ) d s \begin{cases}F(s) = \int_{a}^{b}f(t) \cdot K(t, s) dt \\ \\ f(t) = \int_{c}^{d}F(s)K^{-1}(s, t)ds\end{cases} F(s)=abf(t)K(t,s)dtf(t)=cdF(s)K1(s,t)ds

        函数 f ( t ) f(t) f(t) 是该变换的输入, F ( s ) F(s) F(s) 为变换的输出,因此积分变换一般也称为一种特定的数学运算符。而函数 K ( t , s ) K(t, s) K(t,s) 称为积分核函数(kernel function)。当选取不同的积分域和变换核函数时,就得到不同名称的积分变换。学术一点的说法是:向核空间投影,将原问题转化到核空间。所谓核空间,就是这个空间里面装的是核函数。下表列出常见的变换及其核函数:

表5 常见的变换及其核函数
变换名称
傅里叶变换(Fourier Transform) K ( t , ω ) = 1 2 π e − i ω t K(t, \omega) = \frac{1}{\sqrt{2\pi}}e^{-i \omega t} K(t,ω)=2π 1et
拉普拉斯变换(Laplace Transform) K ( t , s ) = e − s t K(t, s) = e^{-st} K(t,s)=est
梅林变换(Mellin Transform) K ( t , s ) = t s − 1 K(t, s) = t^{s-1} K(t,s)=ts1
汉克尔变换(Hankel Transform) K ( t , s ) = t ⋅ J n ( s t ) K(t, s) = t \cdot J_n(st) K(t,s)=tJn(st)
魏尔斯特拉斯变换(Weierstrass Transform) K ( t , s ) = 1 4 π e − ( s − t ) 2 4 K(t, s) = \frac{1}{\sqrt{4\pi}}e^{-\frac{(s-t)^2}{4}} K(t,s)=4π 1e4(st)2
阿贝尔变换(Abel Transform) K ( t , s ) = 2 t t 2 − s 2 K(t, s) = \frac{2t}{\sqrt{t^2-s^2}} K(t,s)=t2s2 2t
希尔伯特变换(Hilberit Transform) K ( t , s ) = 1 π 1 s − t K(t, s) = \frac{1}{\pi}\frac{1}{s-t} K(t,s)=π1st1
        当然,选取什么样的核主要看我们面对的问题有什么特征。不同问题的特征不同,就会对应特定的核函数。把核函数作为基函数,将现在的坐标投影到核空间里面去,问题就会得到简化。之所以叫核,是因为这是最核心的地方。为什么其他变换你都没怎么听说过而只熟悉傅里叶变换和拉普拉斯变换呢?因为复指数信号才是描述这个世界的特征函数!

        了解更多内容,请阅读:伟大的不仅仅是傅里叶是个数学公式,别的方面也伟大傅里叶变换、拉普拉斯变换、Z 变换的联系

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长路漫漫2021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值