(数学分析复习)含参量积分总结

写在前面

总结一下含参量正常积分、含参量反常积分、Euler积分,这部分内容主要为曲线积分曲面积分以及多重积分做铺垫。主要参考《数学分析(第四版)下册》(华东师范大学数学系编)。

含参量积分

φ ( x ) = ∫ c d f ( x ,   y ) d y F ( x ) = ∫ c ( x ) d ( x ) f ( x ,   y ) d y \begin{aligned} \varphi(x)&=\int_c^df(x,\,y)\mathrm{d}y\\ F(x)&=\int_{c(x)}^{d(x)}f(x,\,y)\mathrm{d}y \end{aligned} φ(x)F(x)=cdf(x,y)dy=c(x)d(x)f(x,y)dy

研究上面两种类型的积分。

含参量正常积分

定理1:积分的连续性

若二元函数 f ( x ,   y ) f(x,\,y) f(x,y)在矩形区域 R = [ a ,   b ] × [ c ,   d ] R=[a,\,b]\times[c,\,d] R=[a,b]×[c,d]上连续,则函数
φ ( x ) = ∫ c d f ( x ,   y ) d y \varphi(x)=\int_c^df(x,\,y)\mathrm{d}y φ(x)=cdf(x,y)dy
[ a ,   b ] [a,\,b] [a,b]上连续。

定理2:变限积分的连续性

设二元函数 f ( x ,   y ) f(x,\,y) f(x,y)在区域
G = { ( x ,   y ) ∣ c ( x ) ⩽ t ⩽ d ( x ) ,   a ⩽ x ⩽ b } G=\{(x,\,y)\big|c(x)\leqslant t \leqslant d(x),\,a\leqslant x\leqslant b\} G={(x,y) c(x)td(x),axb}
上连续,其中 c ( x ) ,   d ( x ) c(x),\,d(x) c(x),d(x) [ a ,   b ] [a,\,b] [a,b]上的连续函数,则函数
F ( x ) = ∫ c ( x ) d ( x ) f ( x ,   y ) d y F(x)=\int_{c(x)}^{d(x)}f(x,\,y)\mathrm{d}y F(x)=c(x)d(x)f(x,y)dy
[ a ,   b ] [a,\,b] [a,b]上连续。

定理3:积分可微性(换序)

若函数 f ( x ,   y ) f(x,\,y) f(x,y)与其偏导数 ∂ ∂ x f ( x ,   y ) \dfrac{\partial}{\partial x}f(x,\,y) xf(x,y)都在矩形区域 R = [ a ,   b ] × [ c ,   d ] R=[a,\,b]\times[c,\,d] R=[a,b]×[c,d]上连续,则
φ ( x ) = ∫ c d f ( x ,   y ) d y \varphi(x)=\int_c^df(x,\,y)\mathrm{d}y φ(x)=cdf(x,y)dy
[ a ,   b ] [a,\,b] [a,b]上可微,且
d d x ∫ c d f ( x ,   y )   d y = ∫ c d ∂ ∂ x f ( x ,   y )   d y \frac{\mathrm{d}}{\mathrm{d}x}\int_c^df(x,\,y)\,\mathrm{d}y=\int_c^d\frac{\partial}{\partial x}f(x,\,y)\,\mathrm{d}y dxdcdf(x,y)dy=cdxf(x,y)dy

★ \bigstar 定理4:变限积分可微性

f ( x ,   y ) ,   f x ( x ,   y ) f(x,\,y),\,f_x(x,\,y) f(x,y),fx(x,y) R = [ a ,   b ] × [ p ,   q ] R=[a,\,b]\times[p,\,q] R=[a,b]×[p,q]上连续, c ( x ) ,   d ( x ) c(x),\,d(x) c(x),d(x)为定义在 [ a ,   b ] [a,\,b] [a,b]上其值含于 [ p ,   q ] [p,\,q] [p,q]内的可微函数,则函数
F ( x ) = ∫ c ( x ) d ( x ) f ( x ,   y ) d y F(x)=\int_{c(x)}^{d(x)}f(x,\,y)\mathrm{d}y F(x)=c(x)d(x)f(x,y)dy
[ a ,   b ] [a,\,b] [a,b]上可微,且
F ′ ( x ) = ∫ c ( x ) d ( x ) f x ( x ,   y )   d y + f ( x ,   d ( x ) ) d ′ ( x ) − f ( x ,   c ( x ) ) c ′ ( x ) . F'(x)=\int_{c(x)}^{d(x)}f_x(x,\,y)\,\mathrm{d}y+f(x,\,d(x))d'(x)-f(x,\,c(x))c'(x). F(x)=c(x)d(x)fx(x,y)dy+f(x,d(x))d(x)f(x,c(x))c(x).

定理5:可积性

若函数 f ( x ,   y ) f(x,\,y) f(x,y)在矩形区域 R = [ a ,   b ] × [ c ,   d ] R=[a,\,b]\times[c,\,d] R=[a,b]×[c,d]上连续,则 φ ( x ) \varphi(x) φ(x) ψ ( y ) \psi(y) ψ(y)分别在 [ a ,   b ] [a,\,b] [a,b] [ c ,   d ] [c,\,d] [c,d]上可积。

定理6:可积性——累次(二次)积分换序

若函数 f ( x ,   y ) f(x,\,y) f(x,y)在矩形区域 R = [ a ,   b ] × [ c ,   d ] R=[a,\,b]\times[c,\,d] R=[a,b]×[c,d]上连续,则
∫ a b   d x ∫ c d f ( x ,   y )   d y = ∫ c d   d y ∫ a b f ( x ,   y )   d x . \int_a^b\,\mathrm{d}x\int_c^df(x,\,y)\,\mathrm{d}y=\int_c^d\,\mathrm{d}y\int_a^bf(x,\,y)\,\mathrm{d}x. abdxcdf(x,y)dy=cddyabf(x,y)dx.

根据上面的定理,可以建立关于正常积分(区别于反常积分)的含参量积分。

例题

I = ∫ 0 1 ln ⁡ ( 1 + x ) 1 + x 2   d x . I=\int_{0}^{1}\frac{\ln(1+x)}{1+x^2}\,\mathrm{d}x. I=011+x2ln(1+x)dx.

这个积分也被称为Serret积分1,可以推广为更加一般的情况,即:

∫ 0 a ln ⁡ ( x + a ) x 2 + a 2   d x = π 8 a ln ⁡ ( 2 a 2 ) . \int_0^a\frac{\ln (x+a)}{x^2+a^2}\,\mathrm{d}x=\frac{\pi}{8a}\ln(2a^2). 0ax2+a2ln(x+a)dx=8aπln(2a2).

初看此积分并不含有参量,于是自然得到法一:

法一:直接积分

注意到分母部分恰好为 arctan ⁡ x \arctan x arctanx的导函数,于是换元,令 t = arctan ⁡ x t=\arctan x t=arctanx, 则 x = tan ⁡ t x=\tan t x=tant, 则有

∫ 0 1 ln ⁡ ( 1 + x ) 1 + x 2   d x = ∫ 0 π 4 ln ⁡ ( 1 + tan ⁡ t )   d t = ∫ 0 π 4 ln ⁡ ( cos ⁡ t + sin ⁡ t cos ⁡ t )   d t = ∫ 0 π 4 ln ⁡ [ 2 cos ⁡ ( π 4 − t ) cos ⁡ t ]   d t = ∫ 0 π 4 ln ⁡ [ 2 cos ⁡ ( π 4 − t ) ]   d t − ∫ 0 π 4 ln ⁡ cos ⁡ t   d t = ∫ 0 π 4 ln ⁡ ( 2 cos ⁡ u )   d u − ∫ 0 π 4 ln ⁡ cos ⁡ t   d t = π 4 ln ⁡ 2 + ∫ 0 π 4 ln ⁡ cos ⁡ u   d u − ∫ 0 π 4 ln ⁡ cos ⁡ t   d t = π 8 ln ⁡ 2 \begin{aligned} \int_{0}^{1}\frac{\ln(1+x)}{1+x^2}\,\mathrm{d}x &=\int_{0}^{\frac\pi4}\ln(1+\tan t)\,\mathrm{d}{t}\\ &=\int_{0}^{\frac\pi4}\ln\bigg(\frac{\cos t+\sin t}{\cos t}\bigg)\,\mathrm{d}{t}\\ &=\int_{0}^{\frac\pi4}\ln\Bigg[\frac{\sqrt2\cos (\frac\pi4-t)}{\cos t}\Bigg]\,\mathrm{d}{t}\\ &=\int_{0}^{\frac\pi4}\ln\Bigg[\sqrt2\cos \bigg(\frac\pi4-t\bigg)\Bigg]\,\mathrm{d}{t}-\int_{0}^{\frac\pi4}\ln\cos t\,\mathrm{d}{t}\\ &=\int_{0}^{\frac\pi4}\ln\big(\sqrt2\cos u\big)\,\mathrm{d}{u}-\int_{0}^{\frac\pi4}\ln\cos t\,\mathrm{d}{t}\\ &=\frac\pi4\ln\sqrt2+\int_{0}^{\frac\pi4}\ln\cos u\,\mathrm{d}{u}-\int_{0}^{\frac\pi4}\ln\cos t\,\mathrm{d}{t}\\ &=\frac\pi8\ln2 \end{aligned} 011+x2ln(1+x)dx=04πln(1+tant)dt=04πln(costcost+sint)dt=04πln[cost2 cos(4πt)]dt=04πln[2 cos(4πt)]dt04πlncostdt=04πln(2 cosu)du04πlncostdt=4πln2 +04πlncosudu04πlncostdt=8πln2

上面的计算步骤也可以简化,使用换元法:令 u = π 4 − t u=\frac{\pi}{4}-t u=4πt,于是可以得到

I = ∫ 0 1 ln ⁡ ( 1 + x ) 1 + x 2   d x = ∫ 0 π 4 ln ⁡ ( 1 + tan ⁡ t )   d t = ∫ 0 π 4 ln ⁡ ( 1 + tan ⁡ ( π 4 − u ) )   d u = ∫ 0 π 4 ln ⁡ ( 1 + 1 − tan ⁡ u 1 + tan ⁡ u )   d t = ∫ 0 π 4 ln ⁡ ( 2 1 + tan ⁡ u )   d t = π 4 ln ⁡ 2 − I \begin{aligned} I=\int_{0}^{1}\frac{\ln(1+x)}{1+x^2}\,\mathrm{d}x &=\int_{0}^{\frac\pi4}\ln(1+\tan t)\,\mathrm{d}{t}\\ &=\int_{0}^{\frac\pi4}\ln\bigg(1+\tan(\frac\pi4-u)\bigg)\,\mathrm{d}{u}\\ &=\int_{0}^{\frac\pi4}\ln\bigg(1+\frac{1-\tan u}{1+\tan u}\bigg)\,\mathrm{d}{t}\\ &=\int_{0}^{\frac\pi4}\ln\bigg(\frac{2}{1+\tan u}\bigg)\,\mathrm{d}{t}\\ &=\frac\pi4\ln2-I \end{aligned} I=011+x2ln(1+x)dx=04πln(1+tant)dt=04πln(1+tan(4πu))du=04πln(1+1+tanu1tanu)dt=04πln(1+tanu2)dt=4πln2I
从而 I = π 8 ln ⁡ 2 I=\frac\pi8\ln2 I=8πln2.

法二:利用含参量积分

构造含参量积分如下,该被积函数显然满足定理3的条件。
I ( α ) = ∫ 0 1 ln ⁡ ( 1 + α x ) 1 + x 2   d x \begin{aligned} I(\alpha)=\int_{0}^{1}\frac{\ln(1+\alpha x)}{1+x^2}\,\mathrm{d}x \end{aligned} I(α)=011+x2ln(1+αx)dx
应用定理3,对 α \alpha α求导得(红色部分由待定系数法求得)
I ′ ( α ) = ∫ 0 1 x ( 1 + α x ) ⋅ ( 1 + x 2 )   d x = ∫ 0 1 1 1 + α 2 ( α + x 1 + x 2 − α 1 + α x )   d x = 1 1 + α 2 ( ∫ 0 1 α 1 + x 2   d x + ∫ 0 1 x 1 + x 2   d x − ∫ 0 1 α 1 + α x   d x ) = 1 1 + α 2 [ α ⋅ π 4 + 1 2 ln ⁡ 2 − ln ⁡ ( 1 + α ) ] \begin{aligned} I'(\alpha)&=\int_{0}^{1}\frac{x}{(1+\alpha x)\cdot(1+x^2)}\,\mathrm{d}x\\ &=\int_{0}^{1}\color{red} \frac1{1+\alpha^2}\bigg(\frac{\alpha+x}{1+x^2}-\frac\alpha{1+\alpha x}\bigg)\color{black}\,\mathrm{d}x\\ &=\frac1{1+\alpha^2}\Bigg(\int_{0}^{1}\frac{\alpha}{1+x^2}\,\mathrm{d}x+\int_{0}^{1}\frac{x}{1+x^2}\,\mathrm{d}x-\int_{0}^{1}\frac\alpha{1+\alpha x}\,\mathrm{d}x\Bigg)\\ &=\frac1{1+\alpha^2}\bigg[\alpha\cdot\frac\pi4+\frac12\ln2-\ln(1+\alpha)\bigg]\\ \end{aligned} I(α)=01(1+αx)(1+x2)xdx=011+α21(1+x2α+x1+αxα)dx=1+α21(011+x2αdx+011+x2xdx011+αxαdx)=1+α21[α4π+21ln2ln(1+α)]
所以
∫ 0 1 I ′ ( α ) d α = I ( 1 ) − I ( 0 ) = I ( 1 ) = ∫ 0 1 1 1 + α 2 [ α ⋅ π 4 + 1 2 ln ⁡ 2 − ln ⁡ ( 1 + α ) ] d α = π 8 ln ⁡ ( 1 + α 2 ) ∣ 0 1 + 1 2 ln ⁡ 2 arctan ⁡ α ∣ 0 1 − I ( 1 ) = π 4 ln ⁡ 2 − I ( 1 ) \begin{aligned} \int_0^1I'(\alpha)\mathrm{d}\alpha &=I(1)-I(0)=I(1)\\ &=\int_0^1\frac1{1+\alpha^2}\bigg[\alpha\cdot\frac\pi4+\frac12\ln2-\ln(1+\alpha)\bigg]\mathrm{d}\alpha\\ &=\frac\pi8\ln\big(1+\alpha^2\big)\bigg|_0^1+\frac12\ln2\arctan \alpha \bigg|_0^1-I(1)\\ &=\frac\pi4\ln2-I(1)\\ \end{aligned} 01I(α)dα=I(1)I(0)=I(1)=011+α21[α4π+21ln2ln(1+α)]dα=8πln(1+α2) 01+21ln2arctanα 01I(1)=4πln2I(1)
得到 I ( 1 ) = π 8 ln ⁡ 2 I(1)=\frac\pi8\ln2 I(1)=8πln2.

含参量反常积分

含参量反常积分需要考虑其收敛性,下面介绍一些定义与定理。

定义1:含参量反常积分的一致收敛

设函数 f ( x ,   y ) f(x,\,y) f(x,y)定义在无界区域 R = { ( x ,   y ) ∣ x ∈ I ,   c ⩽ y < + ∞ } R=\{(x,\,y)\big|x\in I,\,c\leqslant y<+\infty\} R={(x,y) xI,cy<+}, 若含参量反常积分 ∫ c + ∞ f ( x ,   y )   d y \int_c^{+\infty}f(x,\,y)\,\mathrm{d}y c+f(x,y)dy与函数 Φ ( x ) = ∫ c + ∞ f ( x ,   y )   d y \varPhi(x)=\int_c^{+\infty}f(x,\,y)\,\mathrm{d}y Φ(x)=c+f(x,y)dy ∀   ε > 0 ,   ∃ N > c \forall \,\varepsilon>0,\,\exists N>c ε>0,N>c, s.t. M > N M>N M>N时,对一切 x ∈ [ a ,   b ] x\in[a,\,b] x[a,b]都有
∣ ∫ c M f ( x ,   y )   d y − Φ ( x ) ∣ = ∣ ∫ M + ∞ f ( x ,   y )   d y ∣ < ε , \left|\int_{c}^{M}f(x,\,y)\,\mathrm{d}y-\varPhi(x)\right|=\left|\int_M^{+\infty}f(x,\,y)\,\mathrm{d}y\right|<\varepsilon, cMf(x,y)dyΦ(x) = M+f(x,y)dy <ε,
则称含参量反常积分 ∫ c + ∞ f ( x ,   y )   d y \int_c^{+\infty}f(x,\,y)\,\mathrm{d}y c+f(x,y)dy I I I上一致收敛于 Φ ( x ) \varPhi(x) Φ(x), 或称含参量积分 ∫ c + ∞ f ( x ,   y )   d y \int_c^{+\infty}f(x,\,y)\,\mathrm{d}y c+f(x,y)dy I I I上一致收敛。

定理1:一致收敛的柯西准则

含参量反常积分 ∫ c + ∞ f ( x ,   y )   d y \int_c^{+\infty}f(x,\,y)\,\mathrm{d}y c+f(x,y)dy I I I上一致收敛     ⟺     ∀   ε > 0 ,   ∃   M > c ,   s.t.   A 1 ,   A 2 > M \,\iff\,\forall\,\varepsilon>0,\,\exists\,M>c,\,\text{s.t.}\,A_1,\,A_2>M ε>0,M>c,s.t.A1,A2>M时,对一切 x ∈ I x\in I xI, 都有
∣ ∫ A 1 A 2 f ( x ,   y )   d y ∣ < ε . \left|\int_{A_1}^{A_2}f(x,\,y)\,\mathrm{d}y\right|<\varepsilon. A1A2f(x,y)dy <ε.
由上述定理可得:

含参量反常积分 ∫ c + ∞ f ( x ,   y )   d y \int_c^{+\infty}f(x,\,y)\,\mathrm{d}y c+f(x,y)dy I I I上一致收敛     ⟺     lim ⁡ A → + ∞ sup ⁡ x ∈ I ∣ ∫ A + ∞ f ( x ,   y )   d y ∣ = 0 \,\iff\,\lim\limits_{A\to+\infty}\sup\limits_{x\in I}\left|\int_A^{+\infty}f(x,\,y)\,\mathrm{d}y\right|=0 A+limxIsup A+f(x,y)dy =0.

定理2:含参量反常积分与函数项级数一致收敛性的关系

含参量反常积分 ∫ c + ∞ f ( x ,   y )   d y \int_c^{+\infty}f(x,\,y)\,\mathrm{d}y c+f(x,y)dy I I I上一致收敛     ⟺     \,\iff\, 对任一区域 + ∞ +\infty +的递增数列 { A n } \{A_n\} {An}(其中 A 1 = c A_1=c A1=c),函数项级数
∑ n = 1 ∞ ∫ A n A n + 1 f ( x ,   y )   d y = ∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty\int_{A_n}^{A_{n+1}}f(x,\,y)\,\mathrm{d}y=\sum_{n=1}^\infty u_n(x) n=1AnAn+1f(x,y)dy=n=1un(x)
I I I上一致收敛。

魏尔斯特拉斯 M M M判别法

设有函数 g ( y ) g(y) g(y),使得
∣ f ( x ,   y ) ∣ ⩽ g ( y ) ,   ( x ,   y ) ∈ I × [ c ,   + ∞ ) . \left|f(x,\,y)\right|\leqslant g(y),\ (x,\,y)\in I\times[c,\,+\infty). f(x,y)g(y), (x,y)I×[c,+).
∫ c + ∞ g ( y )   d y \int_c^{+\infty}g(y)\,\mathrm{d}y c+g(y)dy收敛,则 ∫ c + ∞ f ( x ,   y )   d y \int_c^{+\infty}f(x,\,y)\,\mathrm{d}y c+f(x,y)dy I I I上一致收敛。

狄利克雷判别法

  1. 对一切实数 N > c N>c N>c,含参量正常积分 ∫ c N f ( x ,   y )   d y \int_c^{N}f(x,\,y)\,\mathrm{d}y cNf(x,y)dy对参量 x x x I I I上一致有界,即存在 M > 0 M>0 M>0,对一切 N > c N>c N>c及一切 x ∈ I x\in I xI,都有

    ∣ ∫ c N f ( x ,   y )   d y ∣ ⩽ M . \left|\int_c^{N}f(x,\,y)\,\mathrm{d}y\right|\leqslant M. cNf(x,y)dy M.

  2. 对每个 x ∈ I x\in I xI,函数 g ( x ,   y ) g(x,\,y) g(x,y)关于 y y y是单调递减且当 y → + ∞ y\to+\infty y+时,对参量 x x x g ( x ,   y ) g(x,\,y) g(x,y)一致地收敛于 0 0 0.

则含参量反常积分 ∫ c + ∞ f ( x ,   y ) g ( x ,   y )   d y \int_c^{+\infty}f(x,\,y)g(x,\,y)\,\mathrm{d}y c+f(x,y)g(x,y)dy I I I上一致收敛。

阿贝尔判别法

  1. ∫ c + ∞ f ( x ,   y )   d y \int_c^{+\infty}f(x,\,y)\,\mathrm{d}y c+f(x,y)dy I I I上一致收敛.
  2. 对每个 x ∈ I x\in I xI,函数 g ( x ,   y ) g(x,\,y) g(x,y) y y y的单调函数。且对参量 x x x g ( x ,   y ) g(x,\,y) g(x,y) I I I上一致有界.

则含参量反常积分 ∫ c + ∞ f ( x ,   y ) g ( x ,   y )   d y \int_c^{+\infty}f(x,\,y)g(x,\,y)\,\mathrm{d}y c+f(x,y)g(x,y)dy I I I上一致收敛。

常用性质

连续性:积分与极限换序

f ( x ,   y ) f(x,\,y) f(x,y) I × [ c ,   + ∞ ) I\times[c,\,+\infty) I×[c,+)上连续,若含参量反常积分 Φ ( x ) = ∫ c + ∞ f ( x ,   y )   d y \varPhi(x)=\int_c^{+\infty}f(x,\,y)\,\mathrm{d}y Φ(x)=c+f(x,y)dy I I I上一致收敛,则 Φ ( x ) \varPhi(x) Φ(x) [ a ,   b ] [a,\,b] [a,b]上连续。

推论

f ( x ,   y ) f(x,\,y) f(x,y) I × [ c ,   + ∞ ) I\times[c,\,+\infty) I×[c,+)上连续,若含参量反常积分 Φ ( x ) = ∫ c + ∞ f ( x ,   y )   d y \varPhi(x)=\int_c^{+\infty}f(x,\,y)\,\mathrm{d}y Φ(x)=c+f(x,y)dy I I I上内闭一致收敛,则 Φ ( x ) \varPhi(x) Φ(x) [ a ,   b ] [a,\,b] [a,b]上连续。

可微性:求导与积分换序

f ( x ,   y ) ,   f x ( x ,   y ) f(x,\,y),\,f_x(x,\,y) f(x,y),fx(x,y) I × [ c ,   + ∞ ] I\times[c,\,+\infty] I×[c,+]上连续,若 Φ ( x ) = ∫ c + ∞ f ( x ,   y )   d y \varPhi(x)=\int_c^{+\infty}f(x,\,y)\,\mathrm{d}y Φ(x)=c+f(x,y)dy I I I上收敛, ∫ c + ∞ f x ( x ,   y )   d y \int_c^{+\infty}f_x(x,\,y)\,\mathrm{d}y c+fx(x,y)dy I I I上一致收敛,则 Φ ( x ) \varPhi(x) Φ(x) I I I上可微,且
Φ ′ ( x ) = ∫ c + ∞ f x ( x ,   y )   d y . \varPhi'(x)=\int_c^{+\infty}f_x(x,\,y)\,\mathrm{d}y. Φ(x)=c+fx(x,y)dy.

推论

f ( x ,   y ) ,   f x ( x ,   y ) f(x,\,y),\,f_x(x,\,y) f(x,y),fx(x,y) I × [ c ,   + ∞ ] I\times[c,\,+\infty] I×[c,+]上连续,若 Φ ( x ) = ∫ c + ∞ f ( x ,   y )   d y \varPhi(x)=\int_c^{+\infty}f(x,\,y)\,\mathrm{d}y Φ(x)=c+f(x,y)dy I I I上收敛, ∫ c + ∞ f x ( x ,   y )   d y \int_c^{+\infty}f_x(x,\,y)\,\mathrm{d}y c+fx(x,y)dy I I I上内闭一致收敛,则 Φ ( x ) \varPhi(x) Φ(x) I I I上可微,且
Φ ′ ( x ) = ∫ c + ∞ f x ( x ,   y )   d y . \varPhi'(x)=\int_c^{+\infty}f_x(x,\,y)\,\mathrm{d}y. Φ(x)=c+fx(x,y)dy.

可积性:积分之间换序

f ( x ,   y ) f(x,\,y) f(x,y) [ a ,   b ] × [ c ,   + ∞ ) [a,\,b]\times[c,\,+\infty) [a,b]×[c,+)上连续,若 Φ ( x ) = ∫ c + ∞ f ( x ,   y )   d y \varPhi(x)=\int_c^{+\infty}f(x,\,y)\,\mathrm{d}y Φ(x)=c+f(x,y)dy [ a ,   b ] [a,\,b] [a,b]上一致收敛,则 Φ ( x ) \varPhi(x) Φ(x) [ a ,   b ] [a,\,b] [a,b]上可积,且
∫ a b   d x ∫ c + ∞ f ( x ,   y )   d y = ∫ c + ∞   d y ∫ a b f ( x ,   y )   d x . \int_a^b\,\mathrm{d}x\int_c^{+\infty}f(x,\,y)\,\mathrm{d}y=\int_c^{+\infty}\,\mathrm{d}y\int_a^bf(x,\,y)\,\mathrm{d}x. abdxc+f(x,y)dy=c+dyabf(x,y)dx.

x x x的取值范围推广到无限区间

f ( x ,   y ) f(x,\,y) f(x,y) [ a ,   + ∞ ) × [ c ,   + ∞ ) [a,\,+\infty)\times[c,\,+\infty) [a,+)×[c,+)上连续,若

  1. ∫ c + ∞ f ( x ,   y )   d y \int_c^{+\infty}f(x,\,y)\,\mathrm{d}y c+f(x,y)dy关于 y y y [ c ,   + ∞ ) [c,\,+\infty) [c,+)上内闭一致收敛,关于 x x x [ a ,   + ∞ ) [a,\,+\infty) [a,+)上内闭一致收敛.

  2. 积分
    ∫ a + ∞   d x ∫ c + ∞ f ( x ,   y )   d y ∫ c + ∞   d y ∫ a + ∞ f ( x ,   y )   d x \int_a^{+\infty}\,\mathrm{d}x\int_c^{+\infty}f(x,\,y)\,\mathrm{d}y\quad\int_c^{+\infty}\,\mathrm{d}y\int_a^{+\infty}f(x,\,y)\,\mathrm{d}x a+dxc+f(x,y)dyc+dya+f(x,y)dx
    中有一个收敛.

∫ a + ∞   d x ∫ c + ∞ f ( x ,   y )   d y = ∫ c + ∞   d y ∫ a + ∞ f ( x ,   y )   d x . \int_a^{+\infty}\,\mathrm{d}x\int_c^{+\infty}f(x,\,y)\,\mathrm{d}y=\int_c^{+\infty}\,\mathrm{d}y\int_a^{+\infty}f(x,\,y)\,\mathrm{d}x. a+dxc+f(x,y)dy=c+dya+f(x,y)dx.

常用的含参量积分——Euler积分简介

Euler积分有以下两种类型,其中 Γ \Gamma Γ函数主要用于阶乘向负实数的推广,在数论中有更广泛的应用。

通过二者的一些性质均可以使一些形式的积分求解更加方便。

Γ \Gamma Γ函数

定义

Γ ( s ) = ∫ 0 + ∞ x s − 1 e − x   d x = λ s ∫ 0 + ∞ x s − 1 e − λ x   d x ,   s > 0. \Gamma(s)=\int_0^{+\infty}x^{s-1}\mathrm{e}^{-x}\,\mathrm{d}x=\lambda^{s}\int_0^{+\infty}x^{s-1}\mathrm{e}^{-\lambda x}\,\mathrm{d}x,\ s>0. Γ(s)=0+xs1exdx=λs0+xs1eλxdx, s>0.

性质
  1. Γ ( s ) \Gamma(s) Γ(s)在定义域 s > 0 s>0 s>0内连续可导;

  2. 满足递推关系: Γ ( s + 1 ) = s Γ ( s ) \Gamma(s+1)=s\Gamma(s) Γ(s+1)=sΓ(s)

  3. Γ ( n + 1 ) = n ! ∫ 0 + ∞ e − x   d x = n ! \Gamma(n+1)=n!\int_0^{+\infty}\mathrm{e}^{-x}\,\mathrm{d}x=n! Γ(n+1)=n!0+exdx=n!

  4. 余元公式:
    Γ ( s ) Γ ( 1 − s ) = π sin ⁡ π s ,   0 < s < 1. \Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin \pi s},\ 0<s<1. Γ(s)Γ(1s)=sinπsπ, 0<s<1.
    s = 1 2 s=\frac12 s=21时有 Γ ( 1 2 ) = π \Gamma(\frac12)=\sqrt\pi Γ(21)=π .

B \Beta B函数

定义

B ( p ,   q ) = ∫ 0 1 x p − 1 ( 1 − x ) q − 1   d x ,   p > 0 ,   q > 0. \Beta(p,\,q)=\int_0^1x^{p-1}(1-x)^{q-1}\,\mathrm{d}x,\ p>0,\ q>0. B(p,q)=01xp1(1x)q1dx, p>0, q>0.

性质
  1. B ( p ,   q ) \Beta(p,\,q) B(p,q)在定义域 p > 0 ,   q > 0 p>0,\,q>0 p>0,q>0内连续;

  2. 对称性: B ( p ,   q ) = B ( q ,   p ) \Beta(p,\,q)=\Beta(q,\,p) B(p,q)=B(q,p)

  3. 递推公式:
    B ( p ,   q ) = q − 1 p + q − 1 B ( p ,   q − 1 ) ( p > 0 ,   q > 1 ) , B ( p ,   q ) = p − 1 p + q − 1 B ( p − 1 ,   q ) ( p > 1 ,   q > 0 ) , B ( p ,   q ) = ( p − 1 ) ( q − 1 ) ( p + q − 1 ) ( p + q − 2 ) B ( p − 1 ,   q − 1 ) ( p > 1 ,   q > 1 ) . \begin{aligned} \Beta(p,\,q)&=\frac{q-1}{p+q-1}\Beta(p,\,q-1)\quad(p>0,\,q>1),\\ \Beta(p,\,q)&=\frac{p-1}{p+q-1}\Beta(p-1,\,q)\quad(p>1,\,q>0),\\ \Beta(p,\,q)&=\frac{(p-1)(q-1)}{(p+q-1)(p+q-2)}\Beta(p-1,\,q-1)\quad(p>1,\,q>1). \end{aligned} B(p,q)B(p,q)B(p,q)=p+q1q1B(p,q1)(p>0,q>1),=p+q1p1B(p1,q)(p>1,q>0),=(p+q1)(p+q2)(p1)(q1)B(p1,q1)(p>1,q>1).

  4. Γ \Gamma Γ函数的关系:
    B ( p ,   q ) = Γ ( p ) Γ ( q ) Γ ( p + q ) ( p > 0 ,   q > 0 ) . \Beta(p,\,q)=\frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}\quad(p>0,\,q>0). B(p,q)=Γ(p+q)Γ(p)Γ(q)(p>0,q>0).

参考


  1. 《Inside Interesting Integrals》 (第二版)Springer出版社,pp:68-70。 ↩︎

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值