含参积分定理总结

含参积分定义

∫ a b f ( x , y ) d x \int_a^b f(x,y)dx abf(x,y)dx

极限与积分交换顺序

f ( x , Y ) f(x,Y) f(x,Y)满足( Y Y Y可以是向量):

  • ∀ Y , f ( x , Y ) \forall Y ,f(x,Y) Y,f(x,Y)黎曼可积
  • f ( x , Y ) f(x,Y) f(x,Y) Y 0 Y_0 Y0附近对于 x ∈ [ a , b ] x\in [a,b] x[a,b]一致连续
    • ∀ ε , ∃ δ ( ε , Y 0 ) \forall \varepsilon ,\exist \delta(\varepsilon ,Y_0) ε,δ(ε,Y0)使得$\forall |Y-Y_0|<\delta ,x\in [a,b],满足|f(x,Y)-f(x,Y_0)|<\varepsilon $
    • 亦即 f ( x , Y ) f(x,Y) f(x,Y)趋于 f ( x , Y 0 ) f(x,Y_0) f(x,Y0)的"步调"对于任意 x x x都是一致的

F ( Y ) = ∫ a b f ( x , Y ) d x F(Y)=\int _a^bf(x,Y)dx F(Y)=abf(x,Y)dx Y 0 Y_0 Y0处连续,即极限与积分可以交换顺序
lim ⁡ Y → Y 0 ∫ a b f ( x , Y ) d x = ∫ a b f ( x , Y 0 ) d x = ∫ a b lim ⁡ Y → Y 0 f ( x , Y ) d x \lim _{Y\to Y_0} \int _a^bf(x,Y)dx=\int_a^bf(x,Y_0)dx=\int_a^b\lim _{Y\to Y_0}f(x,Y)dx YY0limabf(x,Y)dx=abf(x,Y0)dx=abYY0limf(x,Y)dx

  • f ( x , Y ) f(x,Y) f(x,Y)二元连续函数,那么在 Y 0 Y_0 Y0处满足有界连续闭集一定一致连续,显然满足上式、
积分与求导交换顺序

f ( x , Y ) f(x,Y) f(x,Y)满足:

  • f ( x , Y ) f(x,Y) f(x,Y)关于 Y Y Y C 1 C^1 C1函数,并且对于每个 k k k ∂ Y k f ( x , Y ) \partial_{Y_k}f(x,Y) Ykf(x,Y)关于 Y Y Y的连续性对任意 x ∈ [ a , b ] x\in [a,b] x[a,b]一致
  • f ( x , Y ) f(x,Y) f(x,Y) ∂ Y k f ( x , Y ) \partial _{Y_k}f(x,Y) Ykf(x,Y)关于 x x x黎曼可积

F ( Y ) = ∫ a b f ( x , Y ) d x F(Y)=\int_a^bf(x,Y)dx F(Y)=abf(x,Y)dx关于 Y Y Y C 1 C^1 C1的,且对 F ( Y ) F(Y) F(Y)求导可以变为对 f ( x , Y ) f(x,Y) f(x,Y)求导后积分:
∂ Y k ∫ a b f ( x , Y ) d x = ∫ a b ∂ Y k f ( x , Y ) d x \partial_{Y_k}\int_a^bf(x,Y)dx=\int_a^b \partial _{Y_k}f(x,Y)dx Ykabf(x,Y)dx=abYkf(x,Y)dx

  • ∂ Y k f ( x , Y ) \partial_{Y_k}f(x,Y) Ykf(x,Y)是二元连续函数,同理满足上式

  • 总结求导是类似极限的过程,因此要求 ∂ y f \partial_y f yf一致连续且可积

    • 关键步骤:

    ∫ a b ( f ( x , Y + t e k ) − f ( x , Y ) t − ∂ Y k f ( x , Y ) ) d x = ∫ a b ( ∂ Y k f ( x , Y + k e k ) − ∂ Y k f ( x , Y ) ) d x \int_a^b \Big(\frac{f(x,Y+te_k)-f(x,Y)}{t}-\partial _{Y_k}f(x,Y)\Big)dx\\ = \int_a^b\Big(\partial _{Y_k}f(x,Y+ke_k)-\partial _{Y_k}f(x,Y)\Big )dx ab(tf(x,Y+tek)f(x,Y)Ykf(x,Y))dx=ab(Ykf(x,Y+kek)Ykf(x,Y))dx

    • 证明运用邻域内的拉格朗日中值定理,将积分小变化作差取极限求得积分的偏导数,将极限写为中间某点的导数,再根据一致连续得到
积分与积分交换顺序

设$f:[a,b]\times [\alpha,\beta]\to \R $连续,则
∫ α β ∫ a b f ( x , y ) d x d y = ∫ a b ∫ α β f ( x , y ) d y d x \int_\alpha^\beta\int_a^bf(x,y)dx dy=\int_a^b\int _\alpha^\beta f(x,y)dydx αβabf(x,y)dxdy=abαβf(x,y)dydx
证明:

  • F ( u ) = ∫ α β ∫ a u f ( x , y ) d x d y − ∫ a u ∫ α β f ( x , y ) d y d x F(u)=\int_\alpha^\beta\int_a^uf(x,y)dx dy-\int_a^u\int _\alpha^\beta f(x,y)dydx F(u)=αβauf(x,y)dxdyauαβf(x,y)dydx
  • F ( a ) = 0 , F ′ ( u ) = 0 F(a)=0,F'(u)=0 F(a)=0,F(u)=0,则 F ( u ) = 0 F(u)=0 F(u)=0
含参广义积分定义

∫ a + ∞ f ( x , y ) d x ∫ a b f ( x , y ) d x , f ( x , y ) 在 x = a 或 b 处 无 界 \int_a^{+\infty}f(x,y)dx\\ \int_a^bf(x,y)dx,f(x,y)在x=a或b处无界 a+f(x,y)dxabf(x,y)dx,f(x,y)x=ab

累次极限交换顺序

对于 f ( x , y ) f(x,y) f(x,y) x 0 , y 0 x_0,y_0 x0,y0的的去心邻域内:

  • lim ⁡ y → y 0 f ( x , y ) = φ ( x ) \lim _{y\to y_0}f(x,y)=\varphi (x) limyy0f(x,y)=φ(x) x x x一致
    • ∣ f ( x , y ) − φ ( x ) ∣ < ε |f(x,y)-\varphi(x)|<\varepsilon f(x,y)φ(x)<ε只需要满足 ∣ y − y 0 ∣ < δ |y-y_0|<\delta yy0<δ x x x任意
  • lim ⁡ x → x 0 f ( x , y ) = ψ ( y ) \lim _{x\to x_0}f(x,y)=\psi(y) limxx0f(x,y)=ψ(y)

lim ⁡ x → x 0 φ ( x ) = lim ⁡ y → y 0 ψ ( y ) \lim_{x\to x_0} \varphi(x)=\lim _{y\to y_0}\psi(y) limxx0φ(x)=limyy0ψ(y)即:
lim ⁡ x → x 0 lim ⁡ y → y 0 f ( x , y ) = lim ⁡ y → y 0 lim ⁡ x → x 0 f ( x , y ) \lim_{x\to x_0}\lim _{y\to y_0}f(x,y)=\lim _{y\to y_0}\lim _{x\to x_0}f(x,y) xx0limyy0limf(x,y)=yy0limxx0limf(x,y)
特别的若 f ( x , y ) f(x,y) f(x,y) x 0 x_0 x0连续,那么 φ ( x ) \varphi (x) φ(x) x 0 x_0 x0连续(由于一致性)

广义积分与极限交换顺序

f ( x , y ) f(x,y) f(x,y)满足:

  • ∫ a + ∞ f ( x , y ) d x = lim ⁡ A → + ∞ ∫ a A f ( x , y ) d x \int_a^{+\infty}f(x,y)dx=\lim _{A\to +\infty}\int_a^A f(x,y)dx a+f(x,y)dx=limA+aAf(x,y)dx关于 y y y一致收敛(极限与目标的差与 y y y无关)
  • ∀ A > a , lim ⁡ y → y 0 f ( x , y ) = φ ( x ) \forall A>a,\lim_{y\to y_0 }f(x,y)=\varphi(x) A>a,limyy0f(x,y)=φ(x)关于 x ∈ [ a , A ] x\in[a,A] x[a,A]一致收敛(极限与目标的差与 x x x无关)

∫ a + ∞ φ ( x ) d x \int_a^{+\infty}\varphi(x)dx a+φ(x)dx收敛,且:
lim ⁡ y → y 0 ∫ a + ∞ f ( x , y ) d x = ∫ a + ∞ φ ( x ) d x = ∫ a + ∞ lim ⁡ y → y 0 f ( x , y ) d x \lim _{y\to y_0}\int_a^{+\infty}f(x,y)dx=\int_a^{+\infty}\varphi(x)dx=\int_a^{+\infty}\lim_{y\to y_0} f(x,y)dx yy0lima+f(x,y)dx=a+φ(x)dx=a+yy0limf(x,y)dx
简单理解:

  • 第一个条件保证 lim ⁡ y → y 0 ∫ a + ∞ f ( x , y ) d x \lim _{y\to y_0}\int_a^{+\infty}f(x,y)dx limyy0a+f(x,y)dx存在
  • 第二个条件 φ ( x ) \varphi(x) φ(x)一致收敛保证 ∫ a + ∞ φ ( x ) d x \int_a^{+\infty}\varphi(x)dx a+φ(x)dx存在
  • F ( y , A ) = ∫ a A f ( x , y ) d x F(y,A)=\int_a^Af(x,y)dx F(y,A)=aAf(x,y)dx,那么上式两个极限就是 y → y 0 , A → + ∞ y\to y_0,A\to +\infty yy0,A+分别求极限(顺序不同)的结果
  • 由于满足一致性,且两个极限都存在,所以可以交换极限顺序

推论:

  • ∫ a + ∞ f ( x , y ) d x \int_a^{+\infty}f(x,y)dx a+f(x,y)dx关于 y y y一致收敛,且 f ( x , y ) f(x,y) f(x,y)二元连续(则一致连续),则同样可以交换积分与极限顺序
广义积分与定积分交换顺序

f ( x , y ) f(x,y) f(x,y)满足

  • 二元连续
  • ∫ a + ∞ f ( x , y ) d x \int_a^{+\infty}f(x,y)dx a+f(x,y)dx关于 y ∈ [ α , β ] y\in[\alpha,\beta] y[α,β]一致收敛

∫ a + ∞ ( ∫ α β f ( x , y ) d y ) d x \int_a^{+\infty}\Big(\int_\alpha^\beta f(x,y)dy\Big)dx a+(αβf(x,y)dy)dx收敛且
∫ a + ∞ ( ∫ α β f ( x , y ) d y ) d x = ∫ α β ( ∫ a + ∞ f ( x , y ) d x ) d y \int_a^{+\infty}\Big(\int_\alpha^\beta f(x,y)dy\Big)dx=\int_\alpha^\beta\Big(\int_a^{+\infty}f(x,y)dx\Big)dy a+(αβf(x,y)dy)dx=αβ(a+f(x,y)dx)dy
简单理解:

  • 在两个定积分交换顺序的条件——二元连续下多了对 ∫ a + ∞ f ( x , y ) d x \int_a^{+\infty}f(x,y)dx a+f(x,y)dx关于 y y y的一致收敛的要求
  • 因为 ∫ a + ∞ f ( x , y ) d x \int_a^{+\infty}f(x,y)dx a+f(x,y)dx本身是求极限,极限套积分就要求一致收敛了
广义积分与广义积分交换顺序

f ( x , y ) f(x,y) f(x,y)满足

  • 二元连续

  • ∫ a + ∞ f ( x , y ) d x \int_a^{+\infty}f(x,y)dx a+f(x,y)dx关于 y ∈ [ α , + ∞ ) y\in[\alpha,+\infty) y[α,+)一致收敛

  • ∫ α + ∞ f ( x , y ) d y \int_\alpha^{+\infty}f(x,y)dy α+f(x,y)dy关于 x ∈ [ a , + ∞ ) x\in[a,+\infty) x[a,+)一致收敛

  • ∫ a + ∞ ∫ α + ∞ f ( x , y ) d y d x \int_a^{+\infty}\int_{\alpha}^{+\infty}f(x,y)dydx a+α+f(x,y)dydx收敛

∫ α + ∞ ∫ a + ∞ f ( x , y ) d x d y \int_{\alpha}^{+\infty}\int_a^{+\infty}f(x,y)dxdy α+a+f(x,y)dxdy收敛且
∫ α + ∞ ∫ a + ∞ f ( x , y ) d x d y = ∫ a + ∞ ∫ α + ∞ f ( x , y ) d y d x \int_{\alpha}^{+\infty}\int_a^{+\infty}f(x,y)dxdy=\int_a^{+\infty}\int_{\alpha}^{+\infty}f(x,y)dydx α+a+f(x,y)dxdy=a+α+f(x,y)dydx
简单理解:

  • 在广义积分与定积分交换顺序的条件上增加了另一个极限的一致收敛
广义积分与求导交换顺序

f ( x , y , z ) f(x,y,z) f(x,y,z)满足:

  • f ( x , y , z ) , ∂ y f ( x , y , z ) f(x,y,z),\partial _yf(x,y,z) f(x,y,z),yf(x,y,z)连续
  • ∫ a + ∞ f ( x , y 0 , z ) d x \int_a^{+\infty}f(x,y_0,z)dx a+f(x,y0,z)dx z z z一致收敛
  • ∫ a + ∞ ∂ y f ( x , y , z ) d x \int_a^{+\infty}\partial_yf(x,y,z)dx a+yf(x,y,z)dx ( y , z ) (y,z) (y,z)一致收敛

∫ a + ∞ f ( x , y , z ) d x \int_a^{+\infty}f(x,y,z)dx a+f(x,y,z)dx ( y , z ) (y,z) (y,z)一致收敛,且关于 y y y y 0 y_0 y0处可微,且:
∂ ∂ y ( ∫ a + ∞ f ( x , y , z ) d x ) ∣ y = y 0 = ∫ a + ∞ ∂ f ∂ y ( x , y 0 , z ) d x \frac{\partial}{\partial y}\Big(\int_a^{+\infty}f(x,y,z)dx\Big)\Big|_{y=y_0}=\int_a^{+\infty}\frac{\partial f}{\partial y}(x,y_0,z)dx y(a+f(x,y,z)dx)y=y0=a+yf(x,y0,z)dx
简单理解:

  • 连续的条件保证积分存在
  • ∫ a + ∞ f ( x , y 0 , z ) d x \int_a^{+\infty}f(x,y_0,z)dx a+f(x,y0,z)dx的条件比较弱,但是对 ∫ a + ∞ ∂ y f ( x , y , z ) d x \int_a^{+\infty}\partial_yf(x,y,z)dx a+yf(x,y,z)dx的条件比较强
  • 证明关键( ∂ y f \partial_yf yf关于 y , z y,z y,z的一致收敛使得可以交换积分顺序)
    • 莱布尼茨公式

∫ a + ∞ f ( x , y 0 , z ) d x + ∫ y 0 y ∫ a + ∞ ∂ y f ( x , t , z ) d x d t = ∫ a + ∞ f ( x , y 0 , z ) d x + ∫ a + ∞ ∫ y 0 y ∂ y f ( x , t , z ) d x d t = ∫ a + ∞ f ( x , y , z ) d x \int_a^{+\infty}f(x,y_0,z)dx+\int_{y_0}^{y}\int_a^{+\infty}\partial_yf(x,t,z)dxdt\\ =\int_a^{+\infty}f(x,y_0,z)dx+\int_a^{+\infty}\int_{y_0}^{y}\partial_yf(x,t,z)dxdt\\ =\int_a^{+\infty}f(x,y,z)dx a+f(x,y0,z)dx+y0ya+yf(x,t,z)dxdt=a+f(x,y0,z)dx+a+y0yyf(x,t,z)dxdt=a+f(x,y,z)dx

一致收敛判别法

Weierstrass强函数定理

  • ∣ f ( x , y ) ∣ ≤ g ( x ) |f(x,y)|\le g(x) f(x,y)g(x) ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)dx a+g(x)dx收敛,则
    • ∫ a + ∞ f ( x , y ) d x \int_a^{+\infty}f(x,y)dx a+f(x,y)dx一致绝对收敛
  • 证明用柯西准则

Dirichlet判别法

  • g ( x , y ) g(x,y) g(x,y)关于 x x x单调减,且 lim ⁡ x → + ∞ g ( x , y ) = 0 \lim_{x\to +\infty}g(x,y)=0 limx+g(x,y)=0收敛对 y y y一致
  • ∫ a A f ( x , y ) d x \int_a^A f(x,y)dx aAf(x,y)dx关于 ( A , y ) (A,y) (A,y)一致有界,则
    • ∫ a + ∞ f ( x , y ) g ( x , y ) d x \int_a^{+\infty}f(x,y)g(x,y)dx a+f(x,y)g(x,y)dx关于 y y y一致收敛

Abel判别法

  • g ( x , y ) g(x,y) g(x,y)关于 x x x单调减,且关于 y y y一致有界
  • ∫ a + ∞ f ( x , y ) d x \int_a^{+\infty}f(x,y)dx a+f(x,y)dx关于 y y y一致收敛,则
    • ∫ a + ∞ f ( x , y ) g ( x , y ) d x \int_a^{+\infty}f(x,y)g(x,y)dx a+f(x,y)g(x,y)dx关于 y y y一致收敛

总结:

  • 以上判别法在一元积分的基础上增加了对参数的一致性的要求
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值