写在前面
总结高等代数中的行列式(determinant),以及可能用到的一些解题技巧。
行列式的性质
- 行列互换,行列式不变;
- 一行的公因子可以提出去,或者以一数乘行列式的一行就相当于用这个数乘此行列式;
- 如果行列式中一行为0,那么行列式为0;
- 某一行是两组数的和,则此行列式等于两个行列式的和,而这两个行列式除此行外与原来的行列式对应的行相同;
- 如果行列式中有两行相同,那么行列式为0;
- 行列式中有成比例的两行,则行列式为0;
- 把一行的倍数加到另一行,行列式值不变;
- 对换行列式中两行的位置,行列式反号。
行列式的计算
行列式的按行展开
设
d
=
∣
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
⋯
a
n
n
∣
,
d= \begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix},
d=∣∣∣∣∣∣∣∣∣a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann∣∣∣∣∣∣∣∣∣,
A
i
j
A_{ij}
Aij表示行列式元素
a
i
j
a_{ij}
aij的代数余子式,则有
∑
s
=
1
n
a
k
s
A
i
s
=
{
d
,
当
k
=
i
,
0
,
当
k
≠
i
;
∑
s
=
1
n
a
s
l
A
s
j
=
{
d
,
当
l
=
j
,
0
,
当
l
≠
j
;
\begin{aligned} \sum_{s=1}^na_{ks}A_{is}&= \begin{cases} d,&\text{当}k=i,\\ 0,&\text{当}k\neq i; \end{cases}\\ \sum_{s=1}^na_{sl}A_{sj}&= \begin{cases} d,&\text{当}l=j,\\ 0,&\text{当}l\neq j; \end{cases} \end{aligned}
s=1∑naksAiss=1∑naslAsj={d,0,当k=i,当k=i;={d,0,当l=j,当l=j;
Vandermonde行列式
n n n级范德蒙德行列式
d = ∣ 1 1 1 ⋯ 1 a 1 a 2 a 3 ⋯ a n a 1 2 a 2 2 a 3 2 ⋯ a n 2 ⋮ ⋮ ⋮ ⋱ ⋮ a 1 n − 1 a 2 n − 1 a 3 n − 1 ⋯ a n n − 1 ∣ = ∏ 1 ⩽ j < i ⩽ n ( a i − a j ) , n ⩾ 2. d= \begin{vmatrix} 1&1&1&\cdots&1\\ a_1&a_2&a_3&\cdots&a_n\\ a_1^2&a_2^2&a_3^2&\cdots&a_n^2\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ a_1^{n-1}&a_2^{n-1}&a_3^{n-1}&\cdots&a_n^{n-1}\\ \end{vmatrix}=\prod_{1\leqslant j<i\leqslant n}(a_i-a_j),\ \ n\geqslant2. d=∣∣∣∣∣∣∣∣∣∣∣1a1a12⋮a1n−11a2a22⋮a2n−11a3a32⋮a3n−1⋯⋯⋯⋱⋯1anan2⋮ann−1∣∣∣∣∣∣∣∣∣∣∣=1⩽j<i⩽n∏(ai−aj), n⩾2.
性质
∣ a 11 ⋯ a 1 k 0 ⋯ 0 ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ a k 1 ⋯ a k k 0 ⋯ 0 c 11 ⋯ c 1 k b 11 ⋯ b 1 k ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ c r 1 ⋯ c r k b r 1 ⋯ b r r ∣ = ∣ a 11 ⋯ a 1 k ⋮ ⋱ ⋮ a k 1 ⋯ a k k ∣ ∣ b 11 ⋯ b 1 r ⋮ ⋱ ⋮ b r 1 ⋯ b r r ∣ . \begin{vmatrix} a_{11}&\cdots&a_{1k}&0&\cdots&0\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ a_{k1}&\cdots&a_{kk}&0&\cdots&0\\ c_{11}&\cdots&c_{1k}&b_{11}&\cdots&b_{1k}\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ c_{r1}&\cdots&c_{rk}&b_{r1}&\cdots&b_{rr} \end{vmatrix} =\begin{vmatrix} a_{11}&\cdots&a_{1k}\\ \vdots&\ddots&\vdots\\ a_{k1}&\cdots&a_{kk} \end{vmatrix} \begin{vmatrix} b_{11}&\cdots&b_{1r}\\ \vdots&\ddots&\vdots\\ b_{r1}&\cdots&b_{rr} \end{vmatrix}. ∣∣∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ak1c11⋮cr1⋯⋱⋯⋯⋱⋯a1k⋮akkc1k⋮crk0⋮0b11⋮br1⋯⋱⋯⋯⋱⋯0⋮0b1k⋮brr∣∣∣∣∣∣∣∣∣∣∣∣∣∣=∣∣∣∣∣∣∣a11⋮ak1⋯⋱⋯a1k⋮akk∣∣∣∣∣∣∣∣∣∣∣∣∣∣b11⋮br1⋯⋱⋯b1r⋮brr∣∣∣∣∣∣∣.
行列式的乘法定理
两个 n n n级行列式的乘积等于一个 n n n级行列式 C C C,其中 c i j c_{ij} cij为 D 1 D_1 D1的第 i i i行元素分别与 D 2 D_2 D2的第 j j j列的对应元素乘积之和。
上面的结论可以类比矩阵的乘法得到。