行列式性质与计算

写在前面

总结高等代数中的行列式(determinant),以及可能用到的一些解题技巧。

行列式的性质

  1. 行列互换,行列式不变;
  2. 一行的公因子可以提出去,或者以一数乘行列式的一行就相当于用这个数乘此行列式;
  3. 如果行列式中一行为0,那么行列式为0;
  4. 某一行是两组数的和,则此行列式等于两个行列式的和,而这两个行列式除此行外与原来的行列式对应的行相同;
  5. 如果行列式中有两行相同,那么行列式为0;
  6. 行列式中有成比例的两行,则行列式为0;
  7. 把一行的倍数加到另一行,行列式值不变;
  8. 对换行列式中两行的位置,行列式反号。

行列式的计算

行列式的按行展开

d = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ , d= \begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix}, d=a11a21an1a12a22an2a1na2nann,
A i j A_{ij} Aij表示行列式元素 a i j a_{ij} aij的代数余子式,则有
∑ s = 1 n a k s A i s = { d , 当 k = i , 0 , 当 k ≠ i ; ∑ s = 1 n a s l A s j = { d , 当 l = j , 0 , 当 l ≠ j ; \begin{aligned} \sum_{s=1}^na_{ks}A_{is}&= \begin{cases} d,&\text{当}k=i,\\ 0,&\text{当}k\neq i; \end{cases}\\ \sum_{s=1}^na_{sl}A_{sj}&= \begin{cases} d,&\text{当}l=j,\\ 0,&\text{当}l\neq j; \end{cases} \end{aligned} s=1naksAiss=1naslAsj={d,0,k=i,k=i;={d,0,l=j,l=j;

Vandermonde行列式

n n n级范德蒙德行列式

d = ∣ 1 1 1 ⋯ 1 a 1 a 2 a 3 ⋯ a n a 1 2 a 2 2 a 3 2 ⋯ a n 2 ⋮ ⋮ ⋮ ⋱ ⋮ a 1 n − 1 a 2 n − 1 a 3 n − 1 ⋯ a n n − 1 ∣ = ∏ 1 ⩽ j < i ⩽ n ( a i − a j ) ,    n ⩾ 2. d= \begin{vmatrix} 1&1&1&\cdots&1\\ a_1&a_2&a_3&\cdots&a_n\\ a_1^2&a_2^2&a_3^2&\cdots&a_n^2\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ a_1^{n-1}&a_2^{n-1}&a_3^{n-1}&\cdots&a_n^{n-1}\\ \end{vmatrix}=\prod_{1\leqslant j<i\leqslant n}(a_i-a_j),\ \ n\geqslant2. d=1a1a12a1n11a2a22a2n11a3a32a3n11anan2ann1=1j<in(aiaj),  n2.

性质

∣ a 11 ⋯ a 1 k 0 ⋯ 0 ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ a k 1 ⋯ a k k 0 ⋯ 0 c 11 ⋯ c 1 k b 11 ⋯ b 1 k ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ c r 1 ⋯ c r k b r 1 ⋯ b r r ∣ = ∣ a 11 ⋯ a 1 k ⋮ ⋱ ⋮ a k 1 ⋯ a k k ∣ ∣ b 11 ⋯ b 1 r ⋮ ⋱ ⋮ b r 1 ⋯ b r r ∣ . \begin{vmatrix} a_{11}&\cdots&a_{1k}&0&\cdots&0\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ a_{k1}&\cdots&a_{kk}&0&\cdots&0\\ c_{11}&\cdots&c_{1k}&b_{11}&\cdots&b_{1k}\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ c_{r1}&\cdots&c_{rk}&b_{r1}&\cdots&b_{rr} \end{vmatrix} =\begin{vmatrix} a_{11}&\cdots&a_{1k}\\ \vdots&\ddots&\vdots\\ a_{k1}&\cdots&a_{kk} \end{vmatrix} \begin{vmatrix} b_{11}&\cdots&b_{1r}\\ \vdots&\ddots&\vdots\\ b_{r1}&\cdots&b_{rr} \end{vmatrix}. a11ak1c11cr1a1kakkc1kcrk00b11br100b1kbrr=a11ak1a1kakkb11br1b1rbrr.

行列式的乘法定理

两个 n n n级行列式的乘积等于一个 n n n级行列式 C C C,其中 c i j c_{ij} cij D 1 D_1 D1的第 i i i行元素分别与 D 2 D_2 D2的第 j j j列的对应元素乘积之和。

上面的结论可以类比矩阵的乘法得到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值