tags: Combinatorics GT
写在前面
这次总结一下图论距离与连通性这块的内容, 涉及到的算法不多, 但是概念还是比较多的, 分类比较一下.
主要概念
图的距离
设 u u u和 v v v是图 G G G中给定的两个结点, 则两者之间的距离是指 G G G中任意 u − v u-v u−v测地线中变得数目, 记作 d ( u , v ) d(u, v) d(u,v).
满足的公理:
- 正定
- 对称
- 三角不等式
定义
-
结点的偏心距: 该节点与它相距最远的结点间的距离, 记作 e ( v ) e(v) e(v), 表示为
e ( v ) = max u ∈ V ( G ) d ( u , v ) . e(v)=\max_{u\in V(G)}d(u,v). e(v)=u∈V(G)maxd(u,v). -
v v v的偏心结点: 满足 e ( v ) = d ( v , w ) e(v)=d(v,w) e(v)=d(v,w)的结点 w w w. 偏心结点不一定相互.
-
互为偏心的结点: 两个结点中的任何一个都是另一个的偏心结点.
-
图的半径(radius): 所有节点中最小偏心距, 记为 r a d ( G ) \mathrm{rad}{(G)} rad(G).
-
图的中心(center): 具有最小偏心距的结点所成集合, 记为 C ( G ) C(G) C(G).
-
图的边界(boundary): 具有最大偏心距的结点所成集合. 记为 P ( G ) P(G) P(G).
-
图的直径(diameter): 所有结点中的最大偏心距, 记为 d i a m ( G ) \mathrm{diam}(G) diam(G).
-
相对节点对(径向节点对): 满足 d ( u , v ) = diam ( G ) d(u,v)=\text{diam}(G) d(u,v)=diam(G)的一对结点 ( u , v ) (u,v) (u,v). (其中一个节点为另一个的相对节点, 相对节点总是偏心的).
-
半径路: 中心节点集中的某个结点与其偏心结点间的测地线, 其长度必定为 rad ( G ) \text{rad}(G) rad(G).
-
直径路: 相对节点对间的测地线, 其长度为 diam ( G ) \text{diam}(G) diam(G).
-
连通图直径必定为非负整数, 非连通图直径规定为 ∞ \infty ∞.
树的距离之性质
- 树中给定的三个结点 u , v , w u,v,w u,v,w, 若 u , v u,v u,v邻接, 则 d ( u , w ) − d ( v , w ) = 1 d(u,w)-d(v,w)=1 d(u,w)−d(v,w)=1.
- 树的所有偏心结点都是端节点
- 树的所有相对节点都是端节点
- 树的边界都由端节点构成
- 对任意树, 每条直径路都包括其所有中心节点.
- 树的中心由一个结点或两个邻接结点组成. (通过剪枝操作得到)
自补图与距离
- 自补图: G ≅ G ~ G\cong\widetilde{G} G≅G . 例如 C 5 , P 4 C_5,P_4 C5,P4.
树的重心
- 结点 v v v处的分支: 以 v v v为一个端节点的极大子树. 结点 v v v的度等于 v v v处分支的数目.
- 结点 v v v处的权: v v v所有分支中含有的最大边数.
- 树的重心: 由具有最小权的结点组成的集合. (树的重心也是由一个节点或两个邻接结点组成)
图的连通性
- 割点: 若 G G G是连通图, 删除其中某结点之后 G G G变为非连通图, 被删除的结点即割点.(对非连通图来说, 删除某节点之后增加了连通分量数目也称为割点)
- 割边(桥): 删除某边之后连通分量数目增加, 该边为割边.
- 图的点连通度: 把图变为非连通图或者平凡图至少需要删除的结点数目, 记为 κ ( G ) \kappa(G) κ(G). 连通图 G G G有一个割点当且仅当 κ ( G ) = 1 \kappa(G)=1 κ(G)=1.
- 图的点割集: 把图变成非连通图所需要删除的结点组成的集合.
- k − k- k−连通图: κ ( G ) ≥ k \kappa(G)\geq k κ(G)≥k.
- 图的边连通度: 把图 G G G变成非连通图或平凡图至少要删除的边的数目, 记为 λ ( G ) \lambda(G) λ(G). 连通图 G G G有一条割边当且仅当 λ ( G ) = 1 \lambda(G)=1 λ(G)=1.
- 图的边割集: 把图变为非连通图所需要删除的边组成的集合.
- 图的块: 图的极大连通子图.
- 内部不相交 u − v u-v u−v路: 连接 u u u与 v v v的两条路, 若除 u , v u,v u,v外没有其他公共结点.
- 边不相交 u − v u-v u−v路: 若这两条路没有公共边. 任意内部不相交路一定是边不相交的.
- 最小割: 分离 u , v u,v u,v的最小边集.
主要定理
图的距离
-
设 u , v u,v u,v是一连通图的两个邻接节点, 则有 ∣ e ( v ) − e ( u ) ∣ ≤ 1 |e(v)-e(u)|\leq1 ∣e(v)−e(u)∣≤1.
主要采用三角不等式进行证明.
-
对任意图, 取直径路的两个端点 u , v u,v u,v, 对任意结点 w w w都有:
rad ( G ) ≤ diam ( G ) = d ( u , v ) ≤ d ( u , w ) + d ( v , w ) ≤ 2 max i ∈ ( u , v ) d ( i , w ) ≤ 2 e ( w ) , \text{rad}(G)\leq \text{diam}(G)=d(u,v)\leq d(u,w)+d(v,w)\leq2\max_{i\in(u,v)}d(i,w)\leq2e(w), rad(G)≤diam(G)=d(u,v)≤d(u,w)+d(v,w)≤2i∈(u,v)maxd(i,w)≤2e(w),
特别地, 当 w ∈ C ( G ) w\in C(G) w∈C(G)时, 上述不等式变为:
rad ( G ) ≤ diam ( G ) ≤ 2 rad ( G ) . \text{rad}(G)\leq\text{diam}(G)\leq2\text{rad}(G). rad(G)≤diam(G)≤2rad(G). -
对任意树 T T T. 若 ∣ C ( T ) ∣ = 1 |C(T)|=1 ∣C(T)∣=1, 那么 diam ( T ) = 2 rad ( T ) \text{diam}(T)=2\text{rad}(T) diam(T)=2rad(T), 若 ∣ C ( T ) ∣ = 2 |C(T)|=2 ∣C(T)∣=2, 那么 diam ( T ) = 2 rad ( T ) − 1 \text{diam}(T)=2\text{rad}(T)-1 diam(T)=2rad(T)−1.
-
diam ( G ) ≥ 3 \text{diam}(G)\geq3 diam(G)≥3, 则 diam G ~ ≤ 3 \text{diam}\widetilde G\leq3 diamG ≤3.
分类讨论, 构造三种不同距离的集合
-
自补图 G G G的直径小等3. (反证)
-
任意非平凡自补图直径为 2 2 2或 3 3 3.
图的连通性
-
对连通图 G G G, 下述不等式成立:
κ ( G ) ≤ λ ( G ) ≤ δ ( G ) . \kappa(G)\leq\lambda(G)\leq \delta(G). κ(G)≤λ(G)≤δ(G). -
连通图 G G G的一个中心属于 G G G的以一个单独的块, 包含中心节点的块称为中心块.
-
Menger定理: 设 u , v u,v u,v是图 G G G的两个不同的非邻接节点, 那么所有连接 u , v u,v u,v的内部不相交路的数目等于分离 u , v u,v u,v的最小结点集所含的节点数目.
-
至少含有两个节点的图 G G G是 k − k- k−连通的当且仅当每对节点间存在连接他们的 k k k条内部不相交路.
-
设 u , v u,v u,v为 G G G的两个不同的非邻接节点, 那么所有连接 u , v u,v u,v的边不相交路的数目等于分离 u , v u,v u,v的最小边集所含的边数.
一个应用: F − F- F−图
定义
图 G G G若满足一下两个条件, 则称这个图为 F − F- F−图. (far)
- ∣ C ( G ) ∣ ≥ 2 |C(G)|\geq2 ∣C(G)∣≥2.
- 若 x , y ∈ C ( G ) x,y\in C(G) x,y∈C(G), 那么 d ( x , y ) = rad ( G ) d(x,y)=\text{rad}(G) d(x,y)=rad(G).
对每个 0 ≤ j ≤ rad ( G ) 0\leq j\leq \text{rad}(G) 0≤j≤rad(G), 定义第 i i i个中心距离集:
N j ( G ) = { x : d ( x , C ( G ) ) = j } , N_j(G)=\{x:d\big(x,C(G)\big)=j\}, Nj(G)={x:d(x,C(G))=j},
记为 N j N_j Nj. 有 N 0 ( G ) = C ( G ) N_0(G)=C(G) N0(G)=C(G), 且若 N k ( G ) ≠ ∅ N_k(G)\ne\varnothing Nk(G)=∅, 对 ∀ j < k \forall j<k ∀j<k, 有 N j ( G ) ≠ ∅ N_j(G)\ne\varnothing Nj(G)=∅.
一些性质
- G G G是满足 rad ( G ) ≥ 2 \text{rad}(G)\geq2 rad(G)≥2的 F − F- F−图, 若 j = ⌊ r / 2 ⌋ j=\lfloor r/2\rfloor j=⌊r/2⌋, 那么 N j ( G ) ≠ ∅ N_j(G)\ne \varnothing Nj(G)=∅.
- 若图 G G G是半径为 r r r, 直径为 d d d的 F − F- F−图, 则 G G G中任何一条直径路都有一条所有结点都在中心块内, 长度至少为 d − r d-r d−r的子路.
- 对任意正整数 r , k r,k r,k, ( k ≥ 2 ) (k\geq2) (k≥2), 存在半径为 r r r且具有 k k k个中心结点的 F − F- F−图.