机器学习-白板推导系列笔记(二十九)-DBM

本文是关于深度玻尔兹曼机(DBM)的学习笔记,主要讨论预训练过程,特别是通过堆叠受限玻尔兹曼机(RBM)进行预训练,并涉及到了双计数问题及其对模型分布的影响。预训练包括使用RBM的几何平均近似真实后验概率,而在双计数问题中,通过采样可能导致分布过于尖锐。总结时指出,不同层的处理需要区别对待。
摘要由CSDN通过智能技术生成

此文章主要是结合哔站shuhuai008大佬的白板推导视频:深度玻尔兹曼机_73min

全部笔记的汇总贴:机器学习-白板推导系列笔记

对应花书20.4

一、背景介绍

在这里插入图片描述

Δ W = ∂ ( E P D a t a [ v h T ] ⏟ p o s i t i v e    p h a s e − E P m o d e l [ v h T ] ⏟ p o s i t i v e    p h a s e ) \Delta W=\partial\Big({\underset{positive\;phase}{\underbrace{E_{P_{Data}[vh^T]}}}-\underset{positive\;phase}{\underbrace{E_{P_{model}}[vh^T]}}}\Big) ΔW=(positivephase EPData[vhT]positivephase EPmodel[vhT])

P D a t a = P D a t a ( h , v ) = P D a t a ( v ) P m o d e l ( h ∣ v ) P m o d e l = P m o d e l ( h , v ) = P m o d e l ( v ) P m o d e l ( h ∣ v ) P_{Data}=P_{Data}(h,v)=P_{Data}(v)P_{model}(h|v)\\P_{model}=P_{model}(h,v)=P_{model}(v)P_{model}(h|v) PData=PData(h,v)=PData(v)Pmodel(hv)Pmodel=P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值