【论文泛读191】简化的多模态预训练模型上的多阶段预训练

研究提出了一种多阶段预训练(MSP)方法,通过在简化的LXMERT模型上分阶段使用不同粒度信息进行预训练,实现了在资源受限情况下接近大模型的性能。在减少54.1%参数和88.24%训练数据后,实验结果显示该方法在多个下游任务中达到甚至超越原始LXMERT的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贴一下汇总贴:论文阅读记录

论文链接:《Multi-stage Pre-training over Simplified Multimodal Pre-training Models》

一、摘要

LXMERT 等多模态预训练模型在下游任务中取得了优异的成绩。然而,当前的预训练模型需要大量的训练数据,并且模型规模庞大,这使得它们难以应用于资源匮乏的情况。如何在预训练数据较少、模型尺寸较小的前提下,获得与较大模型相似甚至更好的性能成为一个重要问题。在本文中,我们提出了一种新的多阶段预训练 (MSP) 方法,该方法使用文本和图像中从单词、短语到句子的不同粒度的信息来分阶段预训练模型。我们还设计了适合不同阶段信息粒度的几种不同的预训练任务,以便从有限的语料库中有效地捕获不同的知识。我们采用一个简化的 LXMERT (LXMERT-S) 作为我们 MSP 方法的测试平台,它只有原始 LXMERT 模型的 45.9% 的参数和原始预训练数据的 11.76%。实验结果表明,我们的方法在所有下游任务中都达到了与原始 LXMERT 模型相当的性能,甚至在图像文本检索任务中优于原始模型。

二、结论

本文受课程学习思想的启发,提出了一种MSP方法,该方法利用文本和图像中从单词、短语到句子不同粒度的信息分阶段对模型进行预训练,并设计了适合预训练各阶段的预训练任务,基于单词的预训练采用IFRS任务,基于短语的预训练采用TITP任务,基于句子的预训练采用山雀任务。在多个VQA数据集和一个跨模态检索数据集上的实验结果表明ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值