【论文阅读】RAFT: Adapting Language Model to Domain Specific RAG

这篇论文主要是研究如何提升RAG中pre-trained LLM在垂域知识中的开卷考试的能力,提出了一种名为“RAFT”的训练范式。RAG的一个挑战在于,检索内容中同时包含golden document(正确的文档)和distractor documents(相关但非正确的混淆文档)时,大模型可能会从distractor document中抽取出错误回答。RAFT通过构造COT类型的QA对数据集来微调模型,从而提升大模型的推理能力。通过使用RAFT的微调方法,在PubMed, HotpotQA,Gorilla数据集上,垂域RAG的能力均有所提升。

原文地址:https://arxiv.org/abs/2403.10131

  • LLM回答 vs RAG vs RAFT

LLM回答:闭卷考试

RAG:没有学习,直接开卷考试

RAFT:教会模型如何思考,再开卷考试

  • RAFT vs DSF vs RAG

标准RAG中LLM训练仅使用golden doc, 而RAFT的训练会使用负样本+正样本进行训练。

RAFT方法在各个垂域数据集上都提升了RAG的能力,并且,在llama-7B上进行RAFT微调能达到超越GPT-3.5+RAG的效果,这是很惊人的提升。

论文给了一个具体的HotPot QA case对比RAFT和DSF

  • COT prompt vs w.o COT prompt

COT消融实验,证实了COT在RAFT中,显著提升了模型的表现

  • all golden documents vs keep P% data with golden document

模型训练时,P%的训练数据由golden documents和distractor documents构成,而(1-P%)的数据中剔除了golden documents,下图中的D🌟为golden doc,而D为distractor dic。

(这里我比较疑惑,从直觉上来说,保留正确文档让模型推理出正确结果,剔除正确文档让模型拒答是一个比较合理的做法,为什么要强制模型去记住答案而不是推断答案)

实验结果也证实了该猜想,最佳P值随数据集而变化,分别是40%,60%,100%。

  • only golden doc robust or mixed doc robust

文章最后一个实验探讨了RAFT的鲁棒性问题。在运行态,RAG的性能可能会随着TOP-K中distracotr文档的增加而降低。实验的设置是通过对比只用golden doc微调的模型和golden doc+distractor doc微调的模型,在top-k变化时,模型的表现是否稳定。如上图所示,模型完全在golden文档上微调,和在混合不同数量的distractor文档上微调后的表现随着Top-K的变化。显然mixed doc的训练更具有鲁棒性,但最佳mixed doc的数量在不同类型的数据集上不同。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值