这篇论文主要是研究如何提升RAG中pre-trained LLM在垂域知识中的开卷考试的能力,提出了一种名为“RAFT”的训练范式。RAG的一个挑战在于,检索内容中同时包含golden document(正确的文档)和distractor documents(相关但非正确的混淆文档)时,大模型可能会从distractor document中抽取出错误回答。RAFT通过构造COT类型的QA对数据集来微调模型,从而提升大模型的推理能力。通过使用RAFT的微调方法,在PubMed, HotpotQA,Gorilla数据集上,垂域RAG的能力均有所提升。
原文地址:https://arxiv.org/abs/2403.10131
-
LLM回答 vs RAG vs RAFT
LLM回答:闭卷考试
RAG:没有学习,直接开卷考试
RAFT:教会模型如何思考,再开卷考试
-
RAFT vs DSF vs RAG
标准RAG中LLM训练仅使用golden doc, 而RAFT的训练会使用负样本+正样本进行训练。
RAFT方法在各个垂域数据集上都提升了RAG的能力,并且,在llama-7B上进行RAFT微调能达到超越GPT-3.5+RAG的效果,这是很惊人的提升。
论文给了一个具体的HotPot QA case对比RAFT和DSF
-
COT prompt vs w.o COT prompt
COT消融实验,证实了COT在RAFT中,显著提升了模型的表现
-
all golden documents vs keep P% data with golden document
模型训练时,P%的训练数据由golden documents和distractor documents构成,而(1-P%)的数据中剔除了golden documents,下图中的D🌟为golden doc,而D为distractor dic。
(这里我比较疑惑,从直觉上来说,保留正确文档让模型推理出正确结果,剔除正确文档让模型拒答是一个比较合理的做法,为什么要强制模型去记住答案而不是推断答案)
实验结果也证实了该猜想,最佳P值随数据集而变化,分别是40%,60%,100%。
-
only golden doc robust or mixed doc robust
文章最后一个实验探讨了RAFT的鲁棒性问题。在运行态,RAG的性能可能会随着TOP-K中distracotr文档的增加而降低。实验的设置是通过对比只用golden doc微调的模型和golden doc+distractor doc微调的模型,在top-k变化时,模型的表现是否稳定。如上图所示,模型完全在golden文档上微调,和在混合不同数量的distractor文档上微调后的表现随着Top-K的变化。显然mixed doc的训练更具有鲁棒性,但最佳mixed doc的数量在不同类型的数据集上不同。