RAFT: Adapting Language Model to Domain Specific RAG

828 篇文章

已下架不支持订阅

本文介绍RAFT,一种提升大型语言模型在特定领域RAG任务中表现的训练方法。通过忽略无关文档,模型能更好地利用相关文档进行推理。在PubMed、HotpotQA和Gorilla数据集上,RAFT提高了模型的性能,并提供了将预训练LLM转化为领域内RAG的方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《RAFT: Adapting Language Model to Domain Specific RAG》的翻译。

摘要

在文本数据的大型语料库上预训练大型语言模型(LLM)现在是一种标准范式。当将这些LLM用于许多下游应用程序时,通常会通过基于RAG的计算或微调,将新知识(例如,时间关键新闻或私有领域知识)额外训练到预训练的模型中。然而,该模型获得这些新知识的最佳方法仍然是一个悬而未决的问题。在本文中,我们提出了检索增强微调(RAFT),这是一种训练方法,可以提高模型在“openbook”域设置中回答问题的能力。在RAFT中,给定一个问题和一组检索到的文档,我们训练模型忽略那些对回答问题没有帮助的文档,称之为干扰文档。RAFT通过逐字引用相关文件中有助于回答问题的正确顺序来实现这一点。这与RAFT的思维风格反应链相结合,有助于提高模型的推理能力。在特定领域的RAG中,RAFT在PubMed、HotpotQA和Gorilla数据集上不断提高模型的性能,提供了一个训练后配方,将预先训练的LLM改进为域内RAG。RAFT的代码和演示开源于https://github.com/ShishirPatil/gorilla

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值