【论文阅读】Searching for Best Practices in Retrieval-Augmented Generation

这篇论文对RAG的整个workflow以及各个模块进行了非常详细的讨论,甚至对各个模块的方法都做了实验对比,从而来找到RAG的最佳实践。整个阅读下来获益良多,对RAG的很多有了更系统性的认识,同时感慨下RAG的技术栈还是很广的,每个环节都有可以深入学习的地方。

总的来说,文章有3个核心贡献点:

1、探索了RAG各个组件的最佳配置

2、提出RAG评估框架和评估数据集

3、提出“retrieval as generation”, 提升图文问答能力,最后这点是一个比较novel的观点。

Related work

Query and Retrieval Transformation (pre-query & post-query处理)

pre-query: 

query2doc/hyde: query -> pseudo-doc -> enhance retrieval

Toc: query -> subqueries -> aggregated retrieval results

LLamaIndex: query -> pseudo-queries -> improve retrieval

post-query:

hierarchical prompt summarization

abstractive and extractive compressor -> reduce context length and remove redundancy

Retriever Enhancement Strategy (in retrieval提升)

chunk:

smarll2big, sliding window

ranking:

deep learning model: BERT, T5, LLama

TILDE

Retriever and Generator Fine-tuning

LLM finetuning

retrieval finetuning

LLM + retriever finetuning

RAG workflow

RAG工作流通常包含多个中间处理步骤: query classification(确定给定的输入查询是否需要检索)、retrieval(有效地获取查询的相关文档)、reranking(根据检索文档与查询的相关性改进检索文档的顺序)、repacking(将检索的文档组织成结构化的文档以便更好地生成)、summarization(从重新打包的文档中提取用于生成响应的关键信息并消除冗余)模块。

query classification 搜 or 不搜?

sufficient information -> 不搜

insufficient information -> 搜

chunking

token粒度:句子截断,语义截断

语义粒度:使用大模型决定断点,耗时长

句子粒度:既保留语义完整且高效 

chunk size的设置很关键,因此文章针对不同的chunk size进行实验,实验最佳结果是512token(检索+生成)

 常用的chunk技术有两种,small2big和sliding window

文中提到small (175 token) big(512 token)

对比small2bug和sliding window的结果如下: 

Embedding 

LLM-Embedder与BAAI/ big -large-en的效果相当,但LLM-Embedder的尺寸比BAAI/ big-large-en小三倍

向量数据库

选择向量数据库要考虑的4个标准:
多种索引类型提供了基于不同数据特征和用例优化搜索的灵活性。十亿尺度向量支持对于LLM应用程序中处理大型数据集至关重要。混合搜索将矢量搜索与传统的关键词搜索相结合,提高了检索精度。云原生功能确保了云环境中的无缝集成、可伸缩性和管理。

搜索模型对比

数据集:

TREC DL19, TREC DL20

基线:

BM25 sparse retrieval

Contriever dense retrieval

结论:

supervised > unsupervised

考虑性能, Hyde + Hybrid Search

考虑时延,Hybrid Search(BM25 + LLM-Embedder)

Hyde Search

关于Hyde Search中的最佳pseudo-doc数量,1个最佳

 

Hybrid Search

sparse retrieval和dense retrieval如何融合,sparse的权重为0.3时,效果最佳

Reranking

根据实验结果,不同的场景使用不同的重排模型

Repacking

对检索出的chunk拼接方式

forward: score从高到低

reverse:score从低到高

sides: optimal performance is achieved when relevant information is placed at the head or tail of the input, we also include a “sides” option.

这里选择sides是因为在检索模型和重排模型最佳的情况下,sides最优

Summarization

检索出的chunk中包括很多无效信息,通过extractive提取关键信息,abstractive压缩信息形成摘要。实验结果中,recomp是最佳的summarization model

Generator Fine-tuning

正确的微调方式, mix relevant and randomly selected doc, 另一篇论文《RAFT: Adapting Language Model to Domain Specific RAG》则更为详尽地探讨了RAG中generator的微调方法

Comprehensive Evaluation 

一个综合性的评测结果如下表:

Query Classification Module:有助于提高效率和有效性,使总体得分从0.428提高到0.443,并将每个查询的延迟时间从16.41秒减少到11.58秒。

Retrieval Module:虽然Hybrid与HyDE方法的RAG得分最高,为0.58,但它的计算成本相当高,每个查询11.71秒。因此,建议使用Hybrid或Original方法,因为它们在保持相当性能的同时减少了延迟。

Reranking Module:重排名模块的缺失导致性能明显下降。MonoT5获得了最高的平均分,肯定了它在增强检索文档相关性方面的有效性。这表明重新排序在提高所生成回复的质量方面的关键作用

Repacking Module:reverse表现出更好的性能,RAG得分为0.560。这表明,将更相关的上下文定位到更靠近query的位置会产生最佳结果

Summarization Module: 提升比较小,删除该模块追求更小的时延。尽管如此,Recomp仍然是首选,因为它能够解决generator最大长度限制

Discussion:

1、RAG的最佳实践分为两种情况:

追求极致性能:为了获得最高性能,建议合并查询分类模块,使用“Hybrid with HyDE”方法进行检索,使用monoT5进行重新排序,选择Reverse进行重新打包,并利用Recomp进行汇总。这种配置的平均得分最高,为0.483,尽管这是一个计算密集型的过程。

平衡性能和时延:为了在性能和效率之间取得平衡,建议合并查询分类模块,实现Hybrid方法进行检索,使用TILDEv2进行重新排序,选择Reverse进行重新打包,使用Recomp进行汇总。考虑到检索模块占系统处理时间的大部分,在保持其他模块不变的情况下转换到Hybrid方法可以大大减少延迟,同时保持相当的性能。 

2、Multimodal Extension

RAG图文问答,将text2image和image2text检索功能整合到系统中,并将大量成对的图像和文本描述集合作为检索源。

这么做的3个好处:

Groundedness: 可溯源的描述文本的可信度  > 模型生成的可信度

Efficiency: 检索比生成更高效

Maintainability:可维护性强,模型需要持续微调迭代,而检索只需要持续补充最新数据源

Future work

1、探索“training both the retriever and generator jointly” 

2、由于chunk和向量数据库的高成本,chunk技术并未端到端验证,进一步探索chunk技术对RAG整个系统的影响

3、除了图片,继续探索RAG在语音,视频上的应用。

<think>好的,我现在要解决用户在IAR编译器中遇到的错误:“incomplete type is not allowed”。首先,我需要理解这个错误的含义和常见原因。根据我的知识库,这个错误通常发生在代码中使用了未完全定义的类型,比如结构体或联合体声明了但未定义,或者前向声明了某个类型但没有提供完整的定义。 首先,我应该检查用户代码中是否有结构体或联合体的声明但没有定义的情况。比如,如果有一个结构体声明为`struct MyStruct;`,但没有后续的完整定义,那么在需要该结构体大小或成员的地方,编译器就会报这个错误。这时候,需要用户补全结构体的定义,包括成员变量。 其次,检查是否在头文件中只声明了类型而没有包含定义。例如,如果在头文件中使用前向声明,但在使用该类型的源文件中没有包含实际的定义头文件,这也会导致错误。此时,需要确保在使用类型的地方包含了正确的头文件,或者将前向声明替换为完整的定义。 另外,还要考虑typedef的问题。如果用户使用了typedef创建别名,但原始类型未完全定义,同样会引发错误。例如,`typedef struct MyStruct MyType;`之后,如果尝试使用MyType但MyStruct尚未定义,就会出错。需要确保在使用typedef之前,原始类型已经被完整定义。 此外,数组声明中的类型不完整也是一个常见原因。比如声明数组时,如果元素类型未完全定义,编译器无法确定数组的大小,导致错误。需要检查数组声明中的类型是否已经完整定义。 可能还有其他情况,比如在C和C++混合编程时,如果没有正确使用extern "C",或者在头文件中遗漏了必要的包含,也可能导致类型不完整。需要用户检查这些方面。 接下来,我需要将这些可能的原因整理成清晰的解决步骤,并给出具体的代码示例,帮助用户理解如何修改。同时,根据用户提供的引用内容,虽然引用[1]和引用[2]是关于其他错误的,但用户可能希望看到类似的结构,即分点说明解决方案,并引用相关资源。 最后,生成相关问题,帮助用户进一步了解可能相关的编译错误,比如类型未定义、前向声明问题等。这样用户可以有更全面的认识,预防其他类似错误的发生。</think>### IAR编译器错误'incomplete type is not allowed'解决方案 该错误表示代码中使用了**未完全定义的类型**,编译器无法确定其内存布局或成员信息。以下是具体原因及解决方法: #### 1. 结构体/联合体未定义完整 若声明了结构体但未定义成员,在实例化时会报错: ```c struct MyStruct; // 前向声明不完整 struct MyStruct var; // 错误:使用未完成类型 ``` **解决方案**:补全类型定义 ```c struct MyStruct { int id; char name[20]; }; ``` #### 2. 头文件包含缺失 当跨文件使用类型时,需确保定义可见: ```c // file.h struct Data; // 前向声明 // file.c struct Data { // 实际定义 int value; }; ``` **解决方案**:在使用该类型的文件中包含定义头文件 ```c #include "file.c" // 包含实际定义 ``` #### 3. typedef别名问题 使用typedef时原始类型必须完整: ```c typedef struct Node NodeT; // 前向声明 NodeT* ptr; // 允许指针声明 NodeT instance; // 错误:不完整类型 ``` **解决方案**:先完成类型定义再typedef ```c struct Node { int data; struct Node* next; }; typedef struct Node NodeT; ``` #### 4. 数组声明不完整 数组元素类型必须完全定义: ```c struct Element; struct Element arr[10]; // 错误:元素类型未定义 ``` **解决方案**: ```c struct Element { int type; float value; }; struct Element arr[10]; // 合法 ``` #### 调试建议 1. 在IAR工程中搜索错误行号定位问题代码 2. 使用Go to Definition功能追踪类型定义 3. 检查所有头文件包含链 4. 确认没有循环依赖的头文件 编译器需要知道类型的完整信息才能: - 计算sizeof大小 - 分配内存空间 - 访问成员变量 - 进行类型对齐 [^1]: 类似类型转换错误可参考浮点转整型的类型适配问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值