为什么剩余类中的I必须是理想

环、理想、剩余类环的一些理解

      

      设𝑅是一个非空的集合,在其上定义了两种运算,分别叫做加法和乘法,记作“+”和“⋅”,对于𝑅中的任意两个元素𝑎,𝑏均有𝑎+𝑏∈𝑅, 𝑎⋅𝑏∈𝑅(𝑅对于加法和乘法自封闭,𝑎+𝑏,𝑎⋅𝑏分别称为两个元素的和与积,𝑎⋅𝑏通常简记作𝑎𝑏),我们称𝑅对于所规定的加法和乘法成为一个环,如果𝑅中的元素满足以下四条规则:

     (1)  𝑅中所有元素对于加法形成一个加法交换群;
     (2)  对任意𝑎,𝑏,𝑐∈𝑅,𝑎(𝑏𝑐)=(𝑎𝑏)𝑐(乘法满足结合律);
     (3)  存在𝑒∈𝑅,对于任意𝑎∈𝑅均有𝑎𝑒=𝑒𝑎=𝑎;
     (4)  对任意𝑎,𝑏,𝑐∈𝑅,𝑎(𝑏+𝑐)=𝑎𝑏+𝑎𝑐,(𝑏+𝑐)𝑎=𝑏𝑎+𝑐𝑎(乘法对加法的分配律)。

      若对于任意𝑎,𝑏∈𝑅,𝑎𝑏=𝑏𝑎(乘法满足交换律),则称𝑅为交换环。加法群的零元是唯一的,称作环的零元,通常写作0。环𝑅中的𝑒称为环的单位元或者幺元,𝑅的单位元必唯一,有时也记作1或者 1 R 1_R 1R。根据环的定义,对于任意 𝑎 ∈ 𝑅 , 0 𝑎 = ( 𝑒 − 𝑒 ) 𝑎 = 𝑎 − 𝑎 = 0 𝑎∈𝑅,0𝑎=(𝑒−𝑒)𝑎=𝑎−𝑎=0 aR0a=(ee)a=aa=0,同样 𝑎 0 = 0 𝑎0=0 a0=0

理想

      设 𝑅 𝑅 R是一个环, 𝐼 ⊆ 𝑅 𝐼⊆𝑅 IR 𝑅 𝑅 R的加法子群,如果对于任意 𝑟 ∈ 𝑅 , 𝑎 ∈ 𝐼 𝑟∈𝑅,𝑎∈𝐼 rRaI都有 𝑟 𝑎 ∈ 𝐼 𝑟𝑎∈𝐼 raI(或 𝑎 𝑟 ∈ 𝐼 𝑎𝑟∈𝐼 arI),则称 𝐼 𝐼 I 𝑅 𝑅 R的一个左理想(右理想)。若 𝐼 𝐼 I既是左理想又是右理想,则称 𝐼 𝐼 I 𝑅 𝑅 R的理想,如果除 𝐼 𝐼 I 𝑅 𝑅 R外,没有理想(左理想、右理想) 𝐽 𝐽 J满足 𝐼 ⊊ 𝐽 ⊊ 𝑅 𝐼⊊𝐽⊊𝑅 IJR,则称 𝐼 𝐼 I为极大理想(左理想、右理想)。 0 0 0 𝑅 𝑅 R 𝑅 𝑅 R的两个平凡理想。
    在交换环中,左理想也是右理想。
      

剩余类环

      设 𝑅 𝑅 R是一个环, 𝐼 ⊆ 𝑅 𝐼⊆𝑅 IR 𝑅 𝑅 R的理想,加法商群 𝑅 / 𝐼 𝑅/𝐼 R/I中的每一个元素称为一个模𝐼的剩余类,对于 𝑟 ∈ 𝑅 𝑟∈𝑅 rR 𝑟 𝑟 r所在的剩余类为 𝑟 + 𝐼 𝑟+𝐼 r+I,也记作 𝑟 𝑟 r,若再在 𝑅 / 𝐼 𝑅/𝐼 R/I上定义乘法 ( 𝑟 1 ‾ ) ∙ ( ( 𝑟 2 ‾ ) = ( 𝑟 1 𝑟 2 ‾ ) (\overline{𝑟_1})∙((\overline{𝑟_2})=(\overline{𝑟_1𝑟_2}) (r1)((r2)=(r1r2),那么𝑅/𝐼是一个环,称为𝑅模𝐼的剩余类环。
      

问题

      我相信有人会有和我一样的问题:为什么剩余类中的 I I I必须是理想?以及理想这个定义的提出是如何得来的?抱着这个问题,我尝试着在网上搜索了相关的资料,找到了这个对于我理解帮助很大的理解。
      
      环的理想和商环
      数学趣谈: 商群到底是个什么玩意儿?
      由于群和环概念的相似与对应,我决定从群的相关概念出发理解。在群中与理想、剩余类环对应的概念分别是正规子群、商群。以下简要誊写二者定义及先验知识。

      

正规子群

      
      设H是G的子群,若 ∀ a ∈ G ∀a∈G aG , a H = H a aH = Ha aH=Ha,则称 H H H G G G的正规子群,或正则子群、不变子群,记作 H ◁ G H◁G HG
      在正规子群中左陪集和右陪集相等,因此统称为陪集。例如:

    Abel群的子群都是正规子群
    任意群都有两个平凡正规子群,即{e}和它本身

      

陪集

      设 H H H是群 G G G的子群, a ∈ G a∈G aG.

    集合a·H = {a·h | h∈H}称为H关于a的左陪集
    集合H·a = {h·a | h∈H}称为H关于a的右陪集

      

商群

      设 ( H , ⋅ ) (H,·) (H,) ( G , ⋅ ) (G,·) (G,)的一个正规子群,定义 G / H G/H G/H H a ∣ a ∈ G {Ha |a∈G} HaaG,对任意的 H a , H b ∈ G / H Ha,Hb∈G/H Ha,HbG/H,定义 G / H G/H G/H上的运算 ° ° ° H a ° H b = H a b Ha ° Hb = Hab Ha°Hb=Hab,( ( H ⋅ a ) ° ( H ⋅ b ) = H ⋅ a ⋅ b ) (H·a) ° (H·b) = H·a·b) (Ha)°(Hb)=Hab),则 ( G / H , ° ) (G/H,°) (G/H,°)构成一个群,称为G关于H的商群
      
      这么说和商群的意义没有任何直观联系,因此我摘录了来自文章数学趣谈: 商群到底是个什么玩意儿?的解释,十分生动形象。
      一种直观的定义
      商群 G / N G/N G/N真正的意思是,“请考虑 G G G中所有不属 N N N的元素。” 但是总的来说,可以有很多分类方法使得 N N N无法满足属于 G G G 。为了对此有所了解,我们可以想象一下对 G G G的所有元素都可以进行问卷调查。
在这里插入图片描述
      现在假设我们根据调查结果组织 G G G中的元素。这个故事可能是这样的:数学家进入一个这个房间,跟所有元素静静地聊天

     嗨伙计。今天过得怎么样?做得好吗?太棒了。
     听着,对第一个问题回答“是”的,请举手?太好了,嗨。谢谢。
     现在,如果可以的话,请挤在一起。是的,就是那样。
     好吧,从现在开始,你们被统称为N,或者叫平凡陪集。
     但是,抱歉,你们将不再以个人身份被关注。你们会习惯的。

      数学家将注意力转移到不在 N N N中的人群身上。

     大家好。如果你为问题 #2 选择“不太糟糕”,请举手好吗?
     太好了,你们的情况如何?
     好。看,尽管你们都不属于 ,但是你们确实满足了另一个属性:你们都失败得不太严重(ntb)。
     恭喜!现在,请在那一角围成一堆。伙计们,现在快点。好的,完美。
     听着,我们不再单独关心你们了,你们对我们来说是无法区分的。
     因此,你们将被称为“(ntb) N”,或者“陪集 ntb”。

      接着,数学家处理房间中的剩余元素。

     嗨,你们好,谢谢你们的等待。
     你们中那些不属于  的人选择了“非常糟糕”(pb),请组队?
     当然,你们可以站在那个角落。是的,继续。
     现在,由于你们所有人都具有相同的特殊属性,因此对我们来说你们都是一样的,你们将被统称为“(pb) N”或者“陪集 pb”。
     好了,我看到满足离"属于 " 的要求"差得太远"的人已经挤在一起了。
     非常感谢,伙计们。现在,不要哭!这不是一件坏事。
    你们将被统称为“(nec) N”或者“陪集 nec”。

      此时请看下面,左图为问卷调查前,右图为调查后。
在这里插入图片描述
      上图所表达的一是就是我们可以根据元素与子群 N N N 的关系来组织整个群 G G G 。那些属于 N N N 的人还是属于 N N N 。像不太糟糕,非常糟糕和差得太远这样的标签是人为设置的,当然可以有三个以上的选项。更进一步地说,问卷调查是根据与 N N N 的关系来组织 G G G 的成员,这也正是所谓的自然同态 φ : G → G / N \varphi:G\rightarrow G/N φ:GG/N所做的。 φ \varphi φ将元素 g g g 对应到陪集 g N gN gN
      

理解

      类比于商群之于群的意义,我们能够以同样的理解来看待剩余类环的意义,而理想之于剩余类环则类似于正规子群之于商群,是一种组织环中元素的方式,使得商环 R / I R/I R/I 能够自然成环。而之所以 I I I 需要是理想,这是因为:

  1. 关于环的加法,得构成一个正规子群,而这是天然满足的,因为环的加法群是阿贝尔群,而阿贝尔群的一切子群都是正规子群.
  2. R / I R/I R/I中的每个元素,被定义为 I I I 作为子群的陪集, 元素 a ∈ R a∈R aR 所在的陪集就是 a + I a+I a+I , 陪集之间显然可以进行加法运算: ( a + I ) + ( b + I ) = a + b + I + I = ( a + b ) + I (a+I)+(b+I)=a+b+I+I=(a+b)+I (a+I)+(b+I)=a+b+I+I=(a+b)+I
    这满足诱导运算的要求: a a a 的陪集加 b b b 的陪集,等于 a a a b b b 的陪集.  
    为了让 R / I R/I R/I 诱导一个环乘法,我们还需要: a a a 的陪集乘 b b b 的陪集,等于 a a a b b b 的陪集.也就是说, ( a + I ) ( b + I ) = a b + a I + I b + I = a b + I ( 2 ) ( 2 ) ( a + I ) ( b + I ) = a b + a I + I b + I = a b + I (a+I)(b+I)=ab+aI+Ib+I=ab+I(2)(2)(a+I)(b+I)=ab+aI+Ib+I=ab+I (a+I)(b+I)=ab+aI+Ib+I=ab+I(2)(2)(a+I)(b+I)=ab+aI+Ib+I=ab+I
    这就意味着 a I + I b ∈ I aI+Ib∈I aI+IbI,对于任意的 a , b ∈ R a,b∈R a,bR 都成立.那就是说,对于任意的 a,b∈R,都有 a I ∈ I aI∈I aII I b ∈ I Ib∈I IbI 才行.
    如果 I I I R R R 的子环,并且对于任意的 a ∈ R a∈R aR,都有 a I , I a ∈ I aI,Ia∈I aI,IaI,那么我们就可以利用 R R R 的环运算,诱导出 R / I R/I R/I 上的环运算.这样的 I I I 就是我们要的理想.

理想 Or “正规子环”?

      那为什么理想不叫作正规子环呢?之所以不叫正规子环,是因为理想最初来自代数数论,库默尔(Ernst Eduard Kummer)定义了一个他称为 “理想数” 的概念,证明了费马大定理在 n < 100 n<100 n<100 时大多数情况成立.后来,戴德金(Julius Wilhelm Richard Dedekind)发现,库默尔定义的理想数,正是能诱导出商环的 “正规子环”,于是直接借用了 “理想数” 的名字,将其命名为 “理想”.

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值