最大K乘积问题
« 问题描述
设I是一个n位十进制整数。如果将I划分为k段,则可得到k个整数。这k个整数的乘积称为I的一个k乘积。试设计一个算法,对于给定的I和k,求出I的最大k乘积。
例如十进制整数 1234 划分为 3 段可有如下情形:
1 × 2 × 34 = 68
1 × 23 × 4 = 92
12 × 3 × 4 = 144
« 编程任务
对于给定的I 和k,编程计算I 的最大k 乘积。
« 数据输入
输入的第1 行中有2个正整数n和k。正整数n是序列的长度;正整数k是分割的段数。接下来的一行中是一个n位十进制整数。(n<=10)
« 结果输出ss
计算出的最大k乘积。
输入文件示例 | 输出文件示例 |
input.txt | output.txt |
3 2 312 | 62 |
« 实现提示
参考矩阵连乘问题。
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
/*
void copyMatrixchain(){
int i,r,j,k;
memset(m,0,sizeof(m));
memset(s,0,sizeof(s));
for(r=2;r<=n;r++) //跨度从2-n
{
for(i=1;i<=n-r+1;i++) //遍历
{
j=i+r-1;
m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];
s[i][j]=i;
for(k=i+1;k<j;k++) //把矩阵乘法分成两部分,处理前后部分后相乘
{
int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
if(t<m[i][j])
{
m[i][j]=t;
s[i][j]=k;
}
}
}
}
}
*/
long m[20][20];
long l[20][20];
FILE *in,*out;
void dp(int n,int k)
{
int i,j,t;
long tmax;
for(i=1;i<=n;i++)
m[i][1]=l[1][i]; //分成一个数显然是最大的
for(i=1;i<=n;i++) //对1-n分成2-k个数
{
for(j=2;j<=k;j++) //分割后数的个数
{
tmax=0;
for(t=1;t<=i;t++)
{
if((m[t][j-1]*l[t+1][i])>tmax) //递推
tmax=m[t][j-1]*l[t+1][i];
}
m[i][j]=tmax;
}
}
fprintf(out,"%ld",m[n][k]);
}
int main()
{
int n,k,a,temp,t,i,j;
int num[10];
in=fopen("d:\\input.txt","r");
out=fopen("d:\\output.txt","a");
if(!in||!out)
printf("文件打开失败!");
fscanf(in,"%d%d",&n,&k);
t=n;
fscanf(in,"%d",&a);
temp=a;
while(t)
{
num[t]=temp%10;
temp/=10;
t--;
}
for(i=1;i<=k;i++)
printf("%d ",num[i]);
for(i=1;i<=n;i++)
for(j=i;j<=n;j++)
{
int t = 0;
temp=0;
while(t<j-i+1)
{
temp=temp*10+num[i+t];
t++;
}
l[i][j]=temp;
// printf("||%d %d:%d|| ",i,j,w[i][j]);
}
dp(n,k);
fclose(in);
fclose(out);
return 0;
}