以泰坦尼克号为例:
#解决中文乱码问题
plt.rcParams['font.sans-serif'] = 'Microsoft YaHei'
plt.rcParams['axes.unicode_minus'] = False
import matplotlib.pyplot as plt
一 加载训练数据
titanic_df =pd.read_csv("data/train.csv")
titanic_df.head()
训练数据及特征说明
PassengerId:乘客 ID
Survived:是否生存
Pclass:客舱等级
Name:乘客姓名
Sex:性别
Age:年龄
SibSp:在船兄弟姐妹数/配偶数
Parch:在船父母数/子女数
Ticket:船票编号
Fare:船票价格
Cabin:客舱号
Embarked:登船港口
与目标变量无关的特征变量:
PassengerId:乘客 ID
Name:乘客姓名
Ticket:船票编号
#查看数据集的基本信息
titanic_df.info()
#删除与目标变量无关的特征
titanic_df = titanic_df.drop(["PassengerId","Name","Ticket"],axis=1) #axis=1代表删除列数据
titanic_df.head()
二 频数统计分析
- 生还遇难频数分析以及图表展示
Survived_freq = titanic_df.Survived.value_counts()
Survived_freq
# 生成条图和饼图
plt.figure(figsize = (12,5))
plt.subplot(121)
Survived_freq.plot(kind="bar")
plt.title("生还遇难频数分布")
plt.subplot(122)
#第一种方法
slices = Survived_freq.values
activities = ["death","Survived"]
cols