基于泰坦尼克号生还遇难案例进行的数据探索和分析

本文通过对泰坦尼克号数据的探索,分析了生还率、客舱等级、年龄和性别等因素,揭示了相关特征与生存概率的关系。通过频数统计、描述性统计和多变量相关性分析,提供了深入的洞察。
摘要由CSDN通过智能技术生成

以泰坦尼克号为例:

#解决中文乱码问题
plt.rcParams['font.sans-serif'] = 'Microsoft YaHei'
plt.rcParams['axes.unicode_minus'] = False
import matplotlib.pyplot as plt

一 加载训练数据

titanic_df =pd.read_csv("data/train.csv")

titanic_df.head()

在这里插入图片描述
训练数据及特征说明
PassengerId:乘客 ID
Survived:是否生存
Pclass:客舱等级
Name:乘客姓名
Sex:性别
Age:年龄
SibSp:在船兄弟姐妹数/配偶数
Parch:在船父母数/子女数
Ticket:船票编号
Fare:船票价格
Cabin:客舱号
Embarked:登船港口

与目标变量无关的特征变量:
PassengerId:乘客 ID
Name:乘客姓名
Ticket:船票编号

#查看数据集的基本信息
titanic_df.info()

在这里插入图片描述

#删除与目标变量无关的特征
titanic_df = titanic_df.drop(["PassengerId","Name","Ticket"],axis=1) #axis=1代表删除列数据

titanic_df.head()

在这里插入图片描述
二 频数统计分析

  • 生还遇难频数分析以及图表展示
Survived_freq = titanic_df.Survived.value_counts()
Survived_freq

在这里插入图片描述

# 生成条图和饼图 
 
plt.figure(figsize = (12,5)) 
plt.subplot(121)
Survived_freq.plot(kind="bar")
plt.title("生还遇难频数分布")
plt.subplot(122)

#第一种方法
slices = Survived_freq.values
activities = ["death","Survived"]
cols 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值