近世代数--整环与域--有限的整环是域

本文介绍了近世代数中的整环和域概念,并详细探讨了有限整环是域的两种证明方法:通过证明乘法半群为群,以及利用双射性质。博主分享了学习过程,旨在深化对相关定理的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近世代数--整环与域--有限的整环是域

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

这里是整环和域的概念

  • 整环:乘法半群可交换+含幺+无零因子
  • 除环:乘法群
  • 域:乘法群可交换
  • 有限的整环是域:

第一种证明方法:要证乘法半群是群
整环 → \\\rightarrow 无零因子,无零因子的环中 ↔ \leftrightarrow 两个消去律成立 → \\\rightarrow 左右消去律成立+乘法半群+有限,满足左、右消去律的有限半群是群 → \\\rightarrow 乘法半群是群

第二种证明方法:证明双射
R R R是有限整环,

  • 构造映射: φ : R → R , ∀ a , c ∈ R , c ≠ 0 , φ ( a ) = a c \varphi:R\rightarrow R,\forall a,c\in R,c\neq 0,\varphi(a)=ac φ:RR,a,cR,c=0,φ(a)=ac
  • 单射: R R R是有限整环 → R \\\rightarrow R R无零因子 → \\\rightarrow 左右消去律成立 → ∀ x , y , c ∈ R , c ≠ 0 , φ ( x ) = φ ( y ) → x c = y c → ( x − y ) c = 0 → x − y = 0 → x = y → \\\rightarrow \forall x,y,c\in R,c\neq 0,\varphi(x)=\varphi(y)\rightarrow xc=yc\rightarrow (x-y)c=0\rightarrow x-y=0\rightarrow x=y\\\rightarrow x,y,cR,c=0,φ(x)=φ(y)xc=yc(xy)c=0xy=0x=y 函数满足单射
  • 满射:有限的集合映射到自身是单射的,那么这个映射是满射的;无限的集合映射到自身是单射的,这个映射不一定是满射。(这个具体证明我现在还不会,学学集合论再回来补充)
  • 根据上面我们知道,这是一个双射映射 φ : R → R , R \varphi:R\rightarrow R,R φ:RR,R是有限整环,又因为 ∀ r ∈ R , R ⋅ r ∈ R \forall r\in R,R·r\in R rR,RrR,那么 ∀ r ∈ R , r ≠ 0 , ∃ c ∈ R , \forall r\in R,r\neq 0,\exists c\in R, rR,r=0,cR,使得 r ⋅ c = 1 r·c=1 rc=1,即 ∀ r ∈ R , r \forall r\in R,r rR,r是可逆元。 所以,有限整环是域。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值