近世代数--整环与域--有限的整环是域
博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。
这里是整环和域的概念
- 整环:乘法半群可交换+含幺+无零因子
- 除环:乘法群
- 域:乘法群可交换
- 有限的整环是域:
第一种证明方法:要证乘法半群是群
整环
→
\\\rightarrow
→无零因子,无零因子的环中
↔
\leftrightarrow
↔两个消去律成立
→
\\\rightarrow
→左右消去律成立+乘法半群+有限,满足左、右消去律的有限半群是群
→
\\\rightarrow
→乘法半群是群
第二种证明方法:证明双射
R
R
R是有限整环,
- 构造映射: φ : R → R , ∀ a , c ∈ R , c ≠ 0 , φ ( a ) = a c \varphi:R\rightarrow R,\forall a,c\in R,c\neq 0,\varphi(a)=ac φ:R→R,∀a,c∈R,c=0,φ(a)=ac
- 单射: R R R是有限整环 → R \\\rightarrow R →R无零因子 → \\\rightarrow → 左右消去律成立 → ∀ x , y , c ∈ R , c ≠ 0 , φ ( x ) = φ ( y ) → x c = y c → ( x − y ) c = 0 → x − y = 0 → x = y → \\\rightarrow \forall x,y,c\in R,c\neq 0,\varphi(x)=\varphi(y)\rightarrow xc=yc\rightarrow (x-y)c=0\rightarrow x-y=0\rightarrow x=y\\\rightarrow →∀x,y,c∈R,c=0,φ(x)=φ(y)→xc=yc→(x−y)c=0→x−y=0→x=y→ 函数满足单射
- 满射:有限的集合映射到自身是单射的,那么这个映射是满射的;无限的集合映射到自身是单射的,这个映射不一定是满射。(这个具体证明我现在还不会,学学集合论再回来补充)
- 根据上面我们知道,这是一个双射映射 φ : R → R , R \varphi:R\rightarrow R,R φ:R→R,R是有限整环,又因为 ∀ r ∈ R , R ⋅ r ∈ R \forall r\in R,R·r\in R ∀r∈R,R⋅r∈R,那么 ∀ r ∈ R , r ≠ 0 , ∃ c ∈ R , \forall r\in R,r\neq 0,\exists c\in R, ∀r∈R,r=0,∃c∈R,使得 r ⋅ c = 1 r·c=1 r⋅c=1,即有 ∀ r ∈ R , r \forall r\in R,r ∀r∈R,r是可逆元。 所以,有限整环是域。