近世代数--主理想--主理想的组成

本文探讨了近世代数中的主理想,从理想的定义出发,阐述了主理想的特性,包括减法封闭和乘法封闭,并通过具体例子展示了如何在不同环中构成主理想。此外,还讨论了在有单位元的交换环中的主理想表示形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近世代数--主理想--主理想的组成

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

环的特殊子环–理想,类似群的特殊子群–正规子群;
群从正规子群开始,定义商群,得到群的同态定理;
环也是类似的,从理想开始,定义商环,得到环的同态定理。

  • 理想ideal I I I

    R R R为环, I I I R R R的非空子集,如果 I I I满足

    • ∀ r 1 , r 2 ∈ I , \forall r_1,r_2\in I, r1,r2I, r 1 − r 2 ∈ I r_1-r_2\in I r1r2I
    • ∀ r ∈ I , s ∈ R , r s ∈ I → \forall r\in I,s\in R,rs\in I\rightarrow rI,sR,rsI左理想left ideal
    • ∀ r ∈ I , s ∈ R , s r ∈ I → \forall r\in I,s\in R,sr\in I\rightarrow rI,sR,srI右理想right ideal

    记作 I ◃ R I\triangleleft R IR I I I R R R的理想。

  • 平凡理想trivial ideal { 0 } \{0\} { 0} R R R本身是 R R R的平凡理想。

  • 真理想proper ideal I ◃ R I\triangleleft R IR I ⫋ R I\subsetneqq R IR,称 I I I R R R的真理想。

  • 理想例子:求 Z Z Z的所有理想

    I I I Z Z Z的理想,则由理想的定义知: ∀ r ∈ I , s ∈ I ⊂ R , r s ∈ I , s r ∈ I → \\\forall r\in I,s\in I \subset R,rs\in I,sr\in I\\\rightarrow rI,sIR,rsI,srI乘法封闭,又有 ∀ r 1 , r 2 ∈ I , \forall r_1,r_2\in I, r1,r2I, r 1 − r 2 ∈ I r_1-r_2\in I r1r2I,即减法封闭 → I \\\rightarrow I I Z Z Z子环,即理想 → \rightarrow 子环

    Z Z Z的子环是 d Z , d ∈ Z , d ≥ 0 dZ,d\in Z,d\ge0 dZ,dZ,d0中有证明 Z Z Z的子环存在惟一表示, I = { d Z ∣ d ∈ Z , d ≥ 0 } I=\{dZ|d\in Z,d\ge0\} I={ dZdZ,d0},即我们 Z Z Z的子环 I = { d Z ∣ d ∈ Z , d ≥ 0 } I=\{dZ|d\in Z,d\ge0\} I={ dZdZ,d0}中找 Z Z Z的理想

    ∀ r = d x , s = d y ∈ I , x , y , z ∈ Z , r − s = d x − d y = d ( x − y ) ∈ d Z = I , r z = ( d x ) z = d ( x z ) ∈ d Z = I , z r = z ( d x ) = d ( x z ) ∈ d Z = I , \forall r=dx,s=dy\in I,x,y,z\in Z,\\r-s=dx-dy=d(x-y)\in dZ=I,\\rz=(dx)z=d(xz)\in dZ=I,\\zr=z(dx)=d(xz)\in dZ=I\\, r=dx,s=dyI,x,y,zZ,rs=dxdy=d(xy)dZ=I,rz=(dx)z=d(xz)dZ=I,zr=z(dx)=d(xz)dZ=I,所以 I = { d Z , d ∈ Z , d ≥ 0 } I=\{dZ,d\in Z,d\ge 0\} I={ dZ,dZ,d0} Z Z Z的理想,即 I I I Z Z Z的理想 ↔ I \leftrightarrow I </

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值