近世代数--主理想--主理想的组成
博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。
环的特殊子环–理想,类似群的特殊子群–正规子群;
群从正规子群开始,定义商群,得到群的同态定理;
环也是类似的,从理想开始,定义商环,得到环的同态定理。
-
理想ideal: I I I
设 R R R为环, I I I为 R R R的非空子集,如果 I I I满足
- ∀ r 1 , r 2 ∈ I , \forall r_1,r_2\in I, ∀r1,r2∈I,有 r 1 − r 2 ∈ I r_1-r_2\in I r1−r2∈I
- ∀ r ∈ I , s ∈ R , r s ∈ I → \forall r\in I,s\in R,rs\in I\rightarrow ∀r∈I,s∈R,rs∈I→左理想left ideal
- ∀ r ∈ I , s ∈ R , s r ∈ I → \forall r\in I,s\in R,sr\in I\rightarrow ∀r∈I,s∈R,sr∈I→右理想right ideal
记作 I ◃ R I\triangleleft R I◃R, I I I为 R R R的理想。
-
平凡理想trivial ideal: { 0 } \{0\} { 0}和 R R R本身是 R R R的平凡理想。
-
真理想proper ideal: I ◃ R I\triangleleft R I◃R, I ⫋ R I\subsetneqq R I⫋R,称 I I I为 R R R的真理想。
-
理想例子:求 Z Z Z的所有理想
设 I I I为 Z Z Z的理想,则由理想的定义知: ∀ r ∈ I , s ∈ I ⊂ R , r s ∈ I , s r ∈ I → \\\forall r\in I,s\in I \subset R,rs\in I,sr\in I\\\rightarrow ∀r∈I,s∈I⊂R,rs∈I,sr∈I→乘法封闭,又有 ∀ r 1 , r 2 ∈ I , \forall r_1,r_2\in I, ∀r1,r2∈I,有 r 1 − r 2 ∈ I r_1-r_2\in I r1−r2∈I,即减法封闭 → I \\\rightarrow I →I为 Z Z Z的子环,即理想 → \rightarrow →子环
在 Z Z Z的子环是 d Z , d ∈ Z , d ≥ 0 dZ,d\in Z,d\ge0 dZ,d∈Z,d≥0中有证明 Z Z Z的子环存在惟一表示, I = { d Z ∣ d ∈ Z , d ≥ 0 } I=\{dZ|d\in Z,d\ge0\} I={ dZ∣d∈Z,d≥0},即我们从 Z Z Z的子环 I = { d Z ∣ d ∈ Z , d ≥ 0 } I=\{dZ|d\in Z,d\ge0\} I={ dZ∣d∈Z,d≥0}中找 Z Z Z的理想。
∀ r = d x , s = d y ∈ I , x , y , z ∈ Z , r − s = d x − d y = d ( x − y ) ∈ d Z = I , r z = ( d x ) z = d ( x z ) ∈ d Z = I , z r = z ( d x ) = d ( x z ) ∈ d Z = I , \forall r=dx,s=dy\in I,x,y,z\in Z,\\r-s=dx-dy=d(x-y)\in dZ=I,\\rz=(dx)z=d(xz)\in dZ=I,\\zr=z(dx)=d(xz)\in dZ=I\\, ∀r=dx,s=dy∈I,x,y,z∈Z,r−s=dx−dy=d(x−y)∈dZ=I,rz=(dx)z=d(xz)∈dZ=I,zr=z(dx)=d(xz)∈dZ=I,所以 I = { d Z , d ∈ Z , d ≥ 0 } I=\{dZ,d\in Z,d\ge 0\} I={ dZ,d∈Z,d≥0}为 Z Z Z的理想,即 I I I为 Z Z Z的理想 ↔ I \leftrightarrow I </