近世代数--置换群--一个置换的例子

本文探讨了近世代数中的置换群概念,特别是如何证明一个子群是正规子群。通过第(4)个定义,即对于所有 σ∈S 和 τ∈K,证明 στσ−1∈K,来详细解释了置换群的性质。内容涵盖了置换的运算和正规子群的等价条件,适合初学者理解和巩固相关知识。
摘要由CSDN通过智能技术生成

近世代数--置换群--一个置换的例子

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

S 4 S_4 S4中,令 K = { ( 1 ) , ( 12 ) ( 34 ) , ( 13 ) ( 24 ) , ( 14 ) ( 23 ) } K=\{(1),(12)(34),(13)(24),(14)(23)\} K={ (1),(12)(34),(13)(24),(14)(23)},要证 K K K S S S的正规子群。

  • 首先我们要知道正规子群的几个等价定义。
    • H ◃ G H \triangleleft G HG
    • ∀ a ∈ G , a H = H a \forall a\in G,aH=Ha aG,aH=Ha
    • ∀ a ∈ G , a H a − 1 ⊂ H \forall a\in G,aHa^{-1}\subset H aG,aHa1H
    • ∀ a ∈ G , h ∈ H , a h a − 1 ∈ H \forall a\in G,h\in H,aha^{-1}\in H aG,hH,aha1H

证明:
( 1 ) → ( 2 ) : H ◃ G → ∀ a ∈ G , a H = H a (1)\rightarrow(2):H \triangleleft G\rightarrow \forall a\in G,aH=Ha (1)(2)HGaG,aH=Ha
( 2 ) → ( 3 ) : ∀ a ∈ G , a H = H a → a H a − 1 = H → a H a − 1 ⊂ H (2)\rightarrow(3):\forall a\in G,aH=Ha\rightarrow aHa^{-1}=H\rightarrow aHa^{-1}\subset H (2)(3)aG,aH=HaaHa1=HaHa1H
( 3 ) → (

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值