近世代数--整环的商域--整环D扩充为域Q

近世代数--整环,域--整环扩充为域博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。我整理成一个系列:近世代数,方便检索。...
摘要由CSDN通过智能技术生成

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

整环可以扩充成域

我们知道

  • Z = { … − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 … } Z=\{…-3,-2,-1,0,1,2,3…\} Z={ 3,2,1,0,1,2,3} Z Z Z是整数环
  • Q = { n m ∣ m , n ∈ Z , m ≠ 0 } Q=\{\frac{n}{m}|m,n\in Z,m\neq 0\} Q={ mnm,nZ,m=0} Q Q Q是有理数域
  • Z Z Z Q Q Q的子环

整数环 Z Z Z扩充为一个更大的域 Q Q Q,那么是不是所有的环都能扩充成域?如果不是,在什么限制条件下,环可以扩充成域?

  • 无零因子:有零因子的环,即 ∃ a , b ≠ 0 , a ⋅ b = 0 \exists a,b\neq 0,a·b=0 a,b=0,ab=0,那么非零元全体(包括 a , b a,b a,b)在乘法运算下不满足封闭性(非零元相乘得到零元),不构成群;
  • 有单位元:域 → \rightarrow 除环,非零元全体构成群,群的定义:有单位元
  • 交换环:存在无零因子的非交换环不一定能被一个除环包含,可交换性在定义商域的代数运算时有用到

综上,整环满足所有条件,即整环可以扩充成一个域

整环如何扩充成域/商域quotient field

整环扩充成域的构造过程:设 D D D为整环,单位元为 e e e

第一步:构造集合 S S S

S = { ( a , b ) ∣ a , b ∈ D , b ≠ 0 } S=\{(a,b)|a,b\in D,b\neq 0\} S={ (a,b)a,bD,b=0}

第二步:在 S S S上定义一个等价关系

∀ ( a , b ) , ( c , d ) ∈ S , ( a , b ) ∼ ( c , d ) ↔ a d = b c \forall (a,b),(c,d)\in S,(a,b)\sim(c,d)\leftrightarrow ad=bc (a,b),(c,d)S,(a,b)(c,d)ad=bc

  • 证明等价:
    • 自反性:证 ( a , b ) ∼ ( b , a ) (a,b)\sim(b,a) (a,b)(b,a)

      a b = b a → ( a , b ) ∼ ( a , b ) ab=ba\rightarrow (a,b)\sim(a,b) ab=ba(a,b)(a,b)

    • 对称性:证 ( a , b ) ∼ ( c , d ) → ( c , d ) ∼ ( a , b ) (a,b)\sim(c,d)\rightarrow (c,d)\sim(a,b) (a,b)(c,d)(c,d)(a,b)

      ( a , b ) ∼ ( c , d ) → a d = b c → d a = c b → c b = d a → ( c , d ) ∼ ( a , b ) (a,b)\sim(c,d)\\\rightarrow ad=bc\\\rightarrow da=cb\\\rightarrow cb=da\\\rightarrow (c,d)\sim(a,b) (a,b)(c,d)ad=bcda=cbcb=da(c,d)(a,b)

    • 传递性:证 ( a , b ) ∼ ( c , d ) , ( c , d ) ∼ ( e , f ) → ( a , b ) ∼ ( e , f ) (a,b)\sim(c,d),(c,d)\sim(e,f)\rightarrow (a,b)\sim(e,f) (a,b)(c,d),(c,d)(e,f)(a,b)(e,f)

      ( a , b ) ∼ ( c , d ) → a d = b c (a,b)\sim(c,d)\\\rightarrow ad=bc (a,b)(c,d)ad=bc (1)
      ( c , d ) ∼ ( e , f ) → c f = d e (c,d)\sim(e,f)\\\rightarrow cf=de (c,d)(e,f)cf=de (2)
      (1)(2) 相乘: a ( d c ) f = b ( c d ) e , d ≠ 0 a(dc)f=b(cd)e,d\neq 0 a(dc)f=b(cd)e,d=0

      • c = 0 c=0 c=0

        由(1)得: a = 0 a=0 a=0
        由(2)得: e = 0 e=0 e=0
        所以, a f = b e = 0 → ( a , b ) ∼ ( e , f ) af=be=0\rightarrow (a,b)\sim(e,f) af=be=0(a,b)(e,f)

      • c ≠ 0 c\neq 0 c=0

        c ≠ 0 , d ≠ 0 → c d ≠ 0 , d c ≠ 0 c\neq 0,d\neq 0\rightarrow cd\neq 0,dc\neq 0 c=0,d=0cd=0,dc=0
        无零因子的环 → \rightarrow 左右消去律成立得,

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值