Recently you have received two positive integer numbers x and y. You forgot them, but you remembered a shuffled list containing all divisors of x (including 1 and x) and all divisors of y (including 1 and y). If dis a divisor of both numbers x and yat the same time, there are two occurrences of d
in the list.
For example, if x=4and y=6 then the given list can be any permutation of the list [1,2,4,1,2,3,6]. Some of the possible lists are: [1,1,2,4,6,3,2],[4,6,1,1,2,3,2] or [1,6,3,2,4,1,2].Your problem is to restore suitable positive integer numbers x and y that would yield the same list of divisors (possibly in different order).It is guaranteed that the answer exists, i.e. the given list of divisors corresponds to some positive integers x and y.
Input
The first line contains one integer n(2≤n≤128) — the number of divisors of x and y.The second line of the input contains n integers d1,d2,…,dnd1,d2,…,dn (1≤di≤1041≤di≤104), where di is either divisor of xor divisor of y
. If a number is divisor of both numbers xxand yythen there are two copies of this number in the list.OutputPrint two positive integer numbers xxand y— such numbers that merged list of their divisors is the permutation of the given list of integers. It is guaranteed that the answer exists.
Example
Input
10
10 2 8 1 2 4 1 20 4 5
Output
20 8
思路:反向求数列的两个最小公倍数x和y,首先x和y肯定在这个数列中,并且y为其中最大值,那么,先排序,y的因子为能被y除尽并且如果相邻两个数相等,因子为其中一个,对其因子标记,剩下的数列的最大值为x。
代码:
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdio.h>
using namespace std;
int main()
{
int n,a[1005],i,j,x,y,b[1005];
cin>>n;
memset(b,0,sizeof(b));
for(i=0; i<n; i++)
{
cin>>a[i];
}
sort(a,a+n);
x=a[n-1];
y=0;
for(i=0; i<n-1; i++)
{
if(x%a[i]==0&&a[i]!=a[i+1])
{
b[i]=1;
}
}
for(i=n-2;i>=0;i--)
{
if(b[i]==0)
{
y=a[i];
break;
}
}
cout<<x<<" "<<y<<endl;
return 0;
}