在PyTorch中实现SVM分类器

该代码示例展示了如何在PyTorch中定义一个SVM类,利用nn.Linear层和HingeEmbeddingLoss损失函数进行二分类问题的训练。模型在给定的训练数据上学习,并在测试数据上进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在PyTorch中,SVM可以通过定义一个类来实现。下面是一个基于PyTorch的SVM的示例代码:


import torch
import torch.nn as nn
import torch.optim as optim

class SVM(nn.Module):
    def __init__(self, input_size, num_classes):
        super(SVM, self).__init__()
        self.linear = nn.Linear(input_size, num_classes)

    def forward(self
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值