数字基带信号的功率谱密度

一.模型:

s(t)=v(t)+u(t)

v(t)为稳态信号,确知信号,周期性的信号,u(t)交变信号,功率型随机信号

v(t)=n个码元信号求和

\sum_{n\rightarrow \infty }^{\infty }[Pg_1(t-nT_s)+(1-P)g_2(t-nT_s)],式1

=\sum_{n\rightarrow \infty }^{\infty }v_n(t)

稳态信号的周期为T_s

交变信号 u(t)=s(t)-v(t)

 =\sum_{n\rightarrow \infty }^{\infty }u _n(t)

当是0信号时,以概率P:u_n(t)=g_1(t-nT_s)-Pg_1(t-nT_s)-(1-P)g_2(t-nT_s) ={\color{Red} (1-P)}[g_1(t-nT_s)-g_2(t-nT_s)]

当是1信号时,以概率(1-P):u_n(t)=g_2(t-nT_s)-Pg_1(t-nT_s)-(1-P)g_2(t-nT_s) ={\color{Red} -P}[g_1(t-nT_s)-g_2(t-nT_s)]

统一写为 u_n(t)=a_n[g_1(t-nT_s)-g_2(t-nT_s)],

a_n=1-P,,以概率P,a_n=-P,,以概率1-P

u(t)就是随机脉冲序列

二.数字基带信号的功率谱密度

1.稳态信号的功率谱密度

先展开为傅里叶级数,v(t)=\sum_{n\rightarrow \infty }^{\infty }C_me^{j2mf_st\prod }

C_m=\frac{1}{T_s} \int_{\frac{-r_s}{2}}^{\frac{r_s}{2}}v(t)e^{-f2\prod mf_st}dt

代入式1,得到 C_m=\frac{1}{T_s}\int_{-\infty }^{\infty }[Pg_1(t)+(1-P)g_2(t)]e^{-j2\prod mf_st}dt

已知f_s=\frac{1}{T_s},再令

G_1(mf_s)=\int_{-\infty }^{\infty }g_1(t)e^{-j2m\prod f_st}dt

G_2(mf_s)=\int_{-\infty }^{\infty }g_2(t)e^{-j2m\prod f_st}dt

C_m=f_s[PG_1(mf_s)+(1-P)G_2(mf_2)]  ,为式2

\therefore P_v(f)=\sum_{m=-\infty }^{\infty }|C_m|^2\delta (f-mf_s),稳态信号的功率谱密度就是傅里叶系数的平方和deta函数的乘积求和,

代入式2,就得到最后的公式:\therefore P_v(f)=\sum_{m=-\infty }^{\infty }|f_s[PG_1(mf_s)+(1-p)G_2(mf_s)]|^2\delta (f-mf_s)

其功率谱密度是离散的图像,称为离散图,离散图可以为0,发送端的概率与波形有关

2.交变信号的功率谱密度

交变信号u(t)的功率谱密度:

P_n(f)=\lim_{T\rightarrow \infty }\frac{E[|{\color{Red} U_T(f)}|^2]}{T}

T=(2N+1)T_s

P_u(f)=\lim_{N\rightarrow \infty }\frac{E[|{\color{Red} U_T(f)}|^2]}{(2N+1)T_s}

其中,{\color{Magenta} U_T(t)}=\sum_{n =-N}^{N} u_n(t)=\sum_{n =- N}^{N}a_n[g_1(t-nT_s)-g_2(t-nT_s)]

{\color{Red} U_T(f)}=\int_{-\infty }^{\infty }u_T(t)e^{-j2\prod ft}dt

=\sum_{n =- N}^{N}a_n\int_{-\infty }^{\infty }[g_1(t-nT_s)-g_2(t-nT_s)]e^{-j2\prod ft}dt

其中,令G_1(f)=\int_{-\infty }^{\infty }g_1(t)e^{-j2\prod ft}dtG_2(f)=\int_{-\infty }^{\infty }g_2(t)e^{-j2\prod ft}dt

{\color{Red} U_T(f)}=\sum_{n =- N}^{N}a_n\int_{-\infty }^{\infty }[G_1(f)-G_2(f)]e^{-j2\prod ft}dt

|U_T(f)|^2=U_T(f)*U_T'(f)=\sum_{m =- N}^{N}\sum_{n =- N}^{N}a_ma_ne^{j2\prod f(n-m)T_s}[G_1(f)-G_2(f)][G_1(f)-G_2(f)]'

E[|U_T(f)|^2]=\sum_{m =- N}^{N}\sum_{n =- N}^{N}{\color{Red} E(a_ma_n)}e^{j2\prod f(n-m)T_s}[G_1(f)-G_2(f)][G_1(f)-G_2(f)]'

其中a_n=1-P,,以概率P,a_n=-P,,以概率1-P,

当m=n时,a_ma_n=a_n^2

取概率P时,a_n^2=(1-P)^2,

取概率1-P时,a_n^2=P^2

此时求得期望E[a_ma_a]=P(1-P)

m\neq n时,

取概率P^2时,a_ma_n=(1-P)^2

取概率(1-P)^2时,a_ma_n=(1-P)^2

取概率2P(1-P)时,a_ma_n=-P(1-P)

此时数学期望E[a_ma_a]=0

由此,E[|U_T(f)|^2]=\sum_{n =- N}^{N}{\color{Red}P(1-P)}[G_1(f)-G_2(f)]^2=2N+1)P(1-P)|G_1(f)-G_2(f)|^2

那么交变信号的功率谱密度为

 P_u(f)=\lim_{N\rightarrow \infty }\frac{E[|{\color{Red} U_T(f)}|^2]}{(2N+1)T_s}==\lim_{N\rightarrow \infty }\frac{(2N+1)P(1-P)|G_1(f)-G_2(f)|^2}{(2N+1)T_s}

=f_s|G_1(f)-G_2(f)|^2(1-P)P

交变分量为连续型,连续谱不能为0

3.s(t)的功率谱密度

就是将稳态分量的功率谱密度加上交变分量的功率谱密度

P_s(f)=P_v(f) +P_u(f)=\sum_{m=-\infty }^{\infty }|f_s[PG_1(mf_s)+(1-p)G_2(mf_s)]|^2\delta (f-mf_s)+ f_ sP(1-P)|G_1(f)-G_2(f)|^2

为二进制随机序列的双边功率谱密度,f 的取值范围是从负无穷到正无穷

若为单边功率谱密度,在0点处的功率谱密度单独求出,稳态分量和交变分量的功率谱密度乘2,即:

P_s(f)=P_v(f) +_u(f)= {\color{Red} 2}\sum_{m=-\infty }^{\infty }|f_s[PG_1(mf_s)+(1-p)G_2(mf_s)]|^2\delta (f-mf_s)+{\color{Red} 2}f_sP(1-P)|G_1(f)-G_2(f)|^2+{\color{Red} f_s^2|PG_1(0)+(1-P)G_2(0)|^2\delta (f)}

性质:

  1. 连续谱总是存在的
  2. 存在哪些离散谱取决与g_1(t),g_2(t)的波形和概率P
  3. g_1(t)=g_ 2(t),且P=0.5时,离散谱消失

 

 

 

  • 3
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值