文章目录
第六章 数字基带传输系统
6.1数字基带信号及其频谱特性
理论上可以用一串数字序列来传输信息,现实中需要用不同的波形来表示0和1.
6.1.1数字基带信号
- 单极性波形:正电平代表1,零电平代表0.脉冲之间无间隔,极性单一。优点:易于生成。缺点:有直流和低频分量。
- 双极性波形:正负电平分别代表1和0,等概率出现时无直流分量。
- 单极性归零波形:具有单极性的归零波形。可以直接提取定时信息
- 双极性归零波形:具有双极性的归零波形。收发双方容易保持正确的位同步。
- 归零波形:电脉冲宽度 τ \tau τ小于码元宽度 T B T_B TB,信号在一个码元终止时刻前要回到零电平。
- 差分波形:利用相邻码元电平的跳变和不变表示1和0。是一种相对码波形,可以消除设备初始化的影响。
- 多电平波形:用多个电平表示多个数值,在波特率相同的条件下,比特率高。
6.1.2基带信号的频谱特性
-
从频谱中可以获得:频带宽度、直流分量、位定时分量、主板宽度、谱滚降衰减速度。
-
数字基带信号是随机序列信号,只能用功率谱来描述频谱特性。
-
设用 g 1 ( t ) g_1(t) g1(t)和 g 2 ( t ) g_2(t) g2(t)波形来表示1和0信息,二者出现的概率分别为P和1-P。
-
把信号分为稳态波v(t)和交态波u(t)。
-
稳态波:随机序列的统计平均分量,取决于每个码元内出现 g 1 ( t ) 、 g 2 ( t ) g_1(t)、g_2(t) g1(t)、g2(t)的概率加权平均。
-
v ( t ) = ∑ n = − ∞ ∞ [ P g 1 ( t − n T B ) + ( 1 − P ) g 2 ( t − n T B ) ] v(t)=\sum_{n=-\infty}^{\infty}[Pg_1(t-nT_B)+(1-P)g_2(t-nT_B)] v(t)=n=−∞∑∞[Pg1(t−nTB)+(1−P)g2(t−nTB)]
-
交变波u(t)是s(t)与v(t)之差。
-
u ( t ) = s ( t ) − v ( t ) u(t)=s(t)-v(t) u(t)=s(t)−v(t)
-
1.v(t)的功率谱密度 P v ( f ) P_v(f) Pv(f)
P v ( f ) = ∑ m = − ∞ ∞ ∣ f B [ P G 1 ( m f B ) + ( 1 − P ) G 2 ( m f B ) ] ∣ 2 δ ( f − m f B ) P_v(f)=\sum _{m=-\infty}^{\infty}|f_B[PG_1(mf_B)+(1-P)G_2(mf_B)]|^2\delta(f-mf_B) Pv(f)=m=−∞∑∞∣fB[PG1(mfB)+(1−P)G2(mfB)]∣2δ(f−mfB)
稳态波的功率谱 P v ( f ) P_v(f) Pv(f)是冲激强度取决于 ∣ C m ∣ 2 |C_m|^2 ∣Cm∣2的离散线谱,根据离散谱可以确定随机序列中是否包含直流分量(m=0)和定时分量(m=1)。
其中Cm是v(t)展开的傅里叶级数的系数。
C
m
=
1
T
B
∫
−
T
B
2
T
B
2
v
(
t
)
e
−
j
2
π
m
f
B
t
d
t
C_m=\frac1{T_B}\int _{-\frac{T_B}{2}}^{\frac{T_B}{2}}v(t)e^{-j2\pi mf_Bt}dt
Cm=TB1∫−2TB2TBv(t)e−j2πmfBtdt
2.u(t)的功率谱密度 P u ( f ) P_u(f) Pu(f)
P u ( f ) = f B P ( 1 − P ) ∣ G 1 ( f ) − G 2 ( f ) ∣ 2 P_u(f)=f_BP(1-P)|G_1(f)-G_2(f)|^2 Pu(f)=fBP(1−P)∣G1(f)−G2(f)∣2
交变波的功率谱 P u ( f ) P_u(f) Pu(f)是连续谱。
3.s(t)的功率谱密度 P s ( f ) P_s(f) Ps(f)
- 双边的功率谱密度表示式:
P s ( f ) = P u ( f ) + P v ( f ) = ∑ m = − ∞ ∞ ∣ f B [ P G 1 ( m f B ) + ( 1 − P ) G 2 ( m f B ) ] ∣ 2 δ ( f − m f B ) + f B P ( 1 − P ) ∣ G 1 ( f ) − G 2 ( f ) ∣ 2 \begin{align} P_s(f)&=P_u(f)+P_v(f)\\ &=\sum _{m=-\infty}^{\infty}|f_B[PG_1(mf_B)+ (1-P)G_2(mf_B)]|^2\delta(f-mf_B)+f_BP(1-P)|G_1(f)-G_2(f)|^2 \end{align} Ps(f)=Pu(f)+Pv(f)=m=−∞∑∞∣fB[PG1(mfB)+(1−P)G2(mfB)]∣2δ(f−mfB)+fBP(1−P)∣G1(f)−G2(f)∣2
- 单边带的功率谱密度表示式:
P s ( f ) = 2 f B P ( 1 − P ) ∣ G 1 ( f ) − G 2 ( f ) ∣ 2 + f B 2 ∣ P G 1 ( 0 ) + ( 1 − P ) G 2 ( 0 ) ∣ 2 δ ( f ) + 2 f B 2 ∑ m = 1 ∞ ∣ P G 1 ( m f B ) + ( 1 − P ) G 2 ( m f B ) ∣ 2 δ ( f − m f B ) P_s(f)=2f_BP(1-P)|G_1(f)-G_2(f)|^2+f_B^2|PG_1(0)+(1-P)G_2(0)|^2\delta(f)+\\2f_B^2\sum _{m=1}^{\infty}|PG_1(mf_B)+ (1-P)G_2(mf_B)|^2\delta(f-mf_B) Ps(f)=2fBP(1−P)∣G1(f)−G2(f)∣2+fB2∣PG1(0)+(1−P)G2(0)∣2δ(f)+2fB2m=1∑∞∣PG1(mfB)+(1−P)G2(mfB)∣2δ(f−mfB)
-
可以得出以下结论:
- 二进制随机脉冲序列的功率谱 P s ( f ) P_s(f) Ps(f)可能包含连续谱(第一项)和离散谱(第二项)。
- 连续谱一定存在,谱的形状取决于 g 1 ( t ) 、 g 2 ( t ) g_1(t)、g_2(t) g1(t)、g2(t)的频谱以及出现的概率P。
- 离散谱是否存在,取决于 g 1 ( t ) 、 g 2 ( t ) g_1(t)、g_2(t) g1(t)、g2(t)的波形以及出现的概率P。(等概率双极性信号没有离散分量)
-
二进制基带信号的带宽主要依赖于单个码元波形的频谱函数 G 1 ( f ) 、 G 2 ( f ) G_1(f)、G_2(f) G1(f)、G2(f),时间波形的占空比越小,占用的频带越宽。
-
单极性基带信号是否存在离散线谱取决于矩形脉冲的占空比。
6.2基带传输的常用码型
6.2.1传输码的码型选择原则
- 不含直流,低频分量尽量少。
- 应含有丰富的定时信息。
- 功率谱主瓣宽度窄,节省传输频带,高频分量少。
- 不受信息源统计特性的影响。
- 具有内在的检错能力。
- 编译码简单。
6.2.2几种常用的传输码型
- AMI码
- 全称“传号交替反转码”,用+1和-1交替表示1,信号保持不变表示0.
- 优点:
- 没有直流成分,高低频分量少,能量集中在频率为1/2码速处。
- 编解码电路简单,可观察误码情况。
- 译码简单,接收后只要全波整流就可变为单极性RZ波形。
- 缺点:
- 当出现长“0”串时,信号长时间不跳变,提取定时信号困难。
- HDB3码
- 全称“三阶高密度双极性码”。
- 当连“0”个数小于等于3时,与AMI码一致。
- 连“0”超过3时,将4个连“0”用“000V”代替。V为破坏脉冲。
- 相邻的V码极性必须交替。如果V码能满足上一要求,但不能满足此要求,用“B00V”代替。B为调节脉冲。
- 优点:
- 具有AMI码所有优点
- 能够保证定时信息的提取
- 因为AMI码和HDB3码的每位二进制信码都替换成了1位三电平取值,所以也称为1B1T码。
- 双相码
- 又称”曼彻斯特码“,用“01”代表0,用“10”代表1。
- 优点:
- 有丰富的位定时信息
- 没有直流分量
- 编码过程简单
- 缺点:
- 占用带宽加倍
- 频带利用率低
- 差分双向码
- 解决双相码因极性反转而引起的译码错误。
- 每个码元中间的电平跳变用于同步,每个码元的开始处是否存在额外跳变用来确定信码。有跳变代表1,无跳变代表0。
- CMI码
- 全称“传号反转码”,用“11”和“00”交替表示1,用“01”表示0。
- 优点:不会出点三个以上连码,易于检错,易于实现,具有丰富的定时信息。
- 块编码
- nBmB码:把原信息码的n位二进制码分为一组,并置换成m位二进制码的新码组,m>n,有 2 m − 2 n 2^m-2^n 2m−2n种禁用码组。通信中常选m=n+1。
- nbmT码:将n个二进制码变换成m个三进制码,m<n。
6.3数字基带信号传输与码间串扰
6.3.1数字基带信号传输系统的组成
- 主要由发送滤波器(信道信号组成器)、信道、接收滤波器和抽样判决器组成。
- 信道信号形成器:产生适合于信道传输的基带信号波形。
- 信道:允许基带信号通过的媒质。
- 接收滤波器:滤除信道噪声和其他干扰。对信道特性进行均衡,使输出的基带波形有利于抽样判决。
- 抽样判决器:对接收滤波器的输出波形进行抽样判决,恢复或再生基带信号。
- 定时脉冲和同步提取:从接收信号中提取位定时信息。
- 抽样判决器产生错误判决从而产生误码的原因是:
- 码间串扰:由于系统传输总特性不理想,前后码元的波形畸变、展宽,使前面波形出现很长的拖尾,蔓延到当前码元的抽样时刻,从而对判决造成干扰。
- 信道加性噪声
6.3.2数字基带信号传输的定量分析
- 基带传输系统的总传输特性为:
H ( ω ) = G T ( ω ) C ( ω ) G R ( ω ) H(\omega)=G_T(\omega)C(\omega)G_R(\omega) H(ω)=GT(ω)C(ω)GR(ω)
- 传输的基带信号序列可以表示为:
d ( t ) = ∑ n = − ∞ ∞ a n δ ( t − n T B ) d(t)=\sum_{n=-\infty}^{\infty}a_n\delta(t-nT_B) d(t)=n=−∞∑∞anδ(t−nTB)
- 接收滤波器输出信号r(t)为:
r ( t ) = d ( t ) ∗ h ( t ) + n R ( t ) = ∑ n = − ∞ ∞ a n h ( t − n T B ) + n R ( t ) r(t)=d(t)*h(t)+n_R(t)=\sum_{n=-\infty}^{\infty}a_nh(t-nT_B)+n_R(t) r(t)=d(t)∗h(t)+nR(t)=n=−∞∑∞anh(t−nTB)+nR(t)
- 在 t = k T B + t 0 t=kT_B+t_0 t=kTB+t0时刻,输出信号为:
r ( k T B + t 0 ) = a k h ( t 0 ) + ∑ n ≠ k a n h [ ( k − n ) T B + t 0 ] + n R ( k T B + t 0 ) r(kT_B+t_0)=a_kh(t_0)+\sum_{n\ne k}a_nh[(k-n)T_B+t_0]+n_R(kT_B+t_0) r(kTB+t0)=akh(t0)+n=k∑anh[(k−n)TB+t0]+nR(kTB+t0)
其中,第一项为信息项,第二项为码间串扰值,第三项为噪声。
6.4无码间串扰的基带传输特性
6.4.1消除码间串扰的基本思想
- 为了消除码间串扰,需要
∑ n ≠ k a n h [ ( k − n ) T B + t 0 ] = 0 \sum_{n\ne k}a_nh[(k-n)T_B+t_0]=0 n=k∑anh[(k−n)TB+t0]=0
因为每个码元都有很长的拖尾,an是随机的,无法各项相消,所以只能让各个码元在 T B + t 0 、 2 T B + t 0 T_B+t_0、2T_B+t_0 TB+t0、2TB+t0等后面的码元抽样判决时刻为0,就能消除码间串扰。
6.4.2无码间串扰的条件
- 时域条件:基带传输系统的冲激响应波形h(t)为
h ( k T B ) = { 1 k = 0 0 k 为其他常数 h(kT_B)= \begin{cases} 1&k=0\\ 0&k为其他常数 \end{cases} h(kTB)={10k=0k为其他常数
- 频域条件:
∑ i H ( ω + 2 π i T B ) = T B ( T B 可以是一个常数 ) ∣ ω ∣ ≤ π T B \sum_iH(\omega+\frac {2\pi i}{T_B})=T_B(T_B可以是一个常数)~~~~|\omega|\le\frac\pi{T_B} i∑H(ω+TB2πi)=TB(TB可以是一个常数) ∣ω∣≤TBπ
- 物理意义:一个实际的H(w)特性如果能等效成一个理想低通滤波器,则可以实现无码间串扰。
6.4.3无码间串扰传输特性的设计
1.理想低通特性
- 当条件中的i=0时,得到理想低通型:
H ( ω ) = { T B ∣ ω ∣ ≤ π T B 0 ∣ ω ∣ > π T B H(\omega)= \begin{cases} T_B&|\omega|\le\frac\pi {T_B}\\ 0&|\omega|> \frac\pi {T_B}\\ \end{cases} H(ω)={TB0∣ω∣≤TBπ∣ω∣>TBπ
带宽为
B
=
1
/
2
T
B
(
H
z
)
B=1/2T_B(Hz)
B=1/2TB(Hz)
基带系统所能提供的最高频带利用率为
η
=
R
B
/
B
=
2
(
B
a
u
d
/
H
z
)
\eta=R_B/B=2(Baud/Hz)
η=RB/B=2(Baud/Hz)
- 但是该系统物理上无法实现:
- 特性陡峭
- 响应曲线尾部收敛大
- 解决方案:在fN处按”奇对称“条件进行”滚降“。
2.余弦滚降特性
- 使理想低通滤波器特性的边沿缓慢下降,称为”滚降“。
- 常用的一种是余弦滚降,表示为
H ( ω ) = { T B 0 ≤ ∣ ω ∣ < ( 1 − α ) π T B T B 2 [ 1 + s i n T B 2 α ( π T B − ∣ ω ∣ ) ] ( 1 − α ) π T B ≤ ∣ ω ∣ < ( 1 + α ) π T B 0 ∣ ω ∣ ≥ ( 1 + α ) π T B H(\omega)= \begin{cases} T_B&0\le|\omega|<\frac{(1-\alpha)\pi}{T_B}\\ \frac{T_B}2[1+sin\frac{T_B}{2\alpha}(\frac{\pi}{T_B}-|\omega|)]& \frac{(1-\alpha)\pi}{T_B}\le|\omega|<\frac{(1+\alpha)\pi}{T_B}\\ 0&|\omega|\ge\frac{(1+\alpha)\pi}{T_B}\\ \end{cases} H(ω)=⎩ ⎨ ⎧TB2TB[1+sin2αTB(TBπ−∣ω∣)]00≤∣ω∣<TB(1−α)πTB(1−α)π≤∣ω∣<TB(1+α)π∣ω∣≥TB(1+α)π
h ( t ) = s i n π t / T B π t / T B ⋅ c o s α π t / T B 1 − 4 α 2 t 2 / T B 2 h(t)=\frac{sin\pi t/T_B}{\pi t/T_B}\cdot\frac{cos\alpha\pi t/T_B}{1-4\alpha^2t^2/T_B^2} h(t)=πt/TBsinπt/TB⋅1−4α2t2/TB2cosαπt/TB
其中,
α
\alpha
α为滚降系数,定义为
α
=
f
Δ
/
f
N
\alpha=f_\Delta/f_N
α=fΔ/fN
f
Δ
f_\Delta
fΔ为超出奈奎斯特带宽的扩展量,
f
N
f_N
fN为奈奎斯特带宽。
- 滚降系数a越大,h(t)拖尾衰减得越快,对定时精度的要求越低,频谱利用率越低。
B = f N + f Δ = ( 1 + α ) f N η = R B / B = 2 ( 1 + α ) B=f_N+f_\Delta=(1+\alpha)f_N\\ \eta=R_B/B=\frac2{(1+\alpha)} B=fN+fΔ=(1+α)fNη=RB/B=(1+α)2
6.5基带传输系统的抗噪声性能
设基带传输系统中,加性噪声n(t)为均值为0,双边功率谱密度为n0/2的高斯白噪声。接收滤波器为线形网络,则判决电路输入噪声nR(t)也是均值为0的平稳高斯白噪声,功率谱密度为
P
n
(
f
)
=
n
0
2
∣
G
R
(
f
)
∣
2
P_n(f)=\frac{n_0}2|G_R(f)|^2
Pn(f)=2n0∣GR(f)∣2
方差为
σ
n
2
=
∫
−
∞
∞
P
n
(
f
)
d
f
\sigma_n^2=\int_{-\infty}^{\infty}P_n(f)df
σn2=∫−∞∞Pn(f)df
噪声的一维概率密度函数为
f
(
V
)
=
1
2
π
σ
n
e
−
V
2
/
2
σ
n
2
f(V)=\frac{1}{\sqrt{2\pi}\sigma_n}e^{-V^2/2\sigma_n^2}
f(V)=2πσn1e−V2/2σn2
6.5.1二进制双极性基带系统
- 设抽样时刻电平分别为+A和-A,则抽样时刻的取值为
x ( k T B ) = { A + n R ( k T B ) 发送 1 时 − A + n R ( k T B ) 发送 0 时 x(kT_B)= \begin{cases} A+n_R(kT_B)&发送1时 \\-A+n_R(kT_B)&发送0时 \end{cases} x(kTB)={A+nR(kTB)−A+nR(kTB)发送1时发送0时
- 其一维概率密度函数分别为为
f 1 ( x ) = 1 2 π σ n e x p ( − ( x − A ) 2 2 σ n 2 ) f 0 ( x ) = 1 2 π σ n e x p ( − ( x + A ) 2 2 σ n 2 ) f_1(x)=\frac{1}{\sqrt{2\pi}\sigma_n}exp(-\frac{(x-A)^2}{2\sigma^2_n})\\ f_0(x)=\frac{1}{\sqrt{2\pi}\sigma_n}exp(-\frac{(x+A)^2}{2\sigma^2_n})\ f1(x)=2πσn1exp(−2σn2(x−A)2)f0(x)=2πσn1exp(−2σn2(x+A)2)
- 发1错判为0和发0错判为1的概率分别为
P ( 0 / 1 ) = 1 2 + 1 2 e r f ( V d − A 2 σ n ) P ( 1 / 0 ) = 1 2 − 1 2 e r f ( V d + A 2 σ n ) P(0/1)=\frac12+\frac12erf(\frac{V_d-A}{\sqrt2\sigma_n})\\ P(1/0)=\frac12-\frac12erf(\frac{V_d+A}{\sqrt2\sigma_n}) P(0/1)=21+21erf(2σnVd−A)P(1/0)=21−21erf(2σnVd+A)
- 系统的总的误码率为
P e = P ( 1 ) P ( 0 / 1 ) + P ( 0 ) P ( 1 / 0 ) P_e=P(1)P(0/1)+P(0)P(1/0) Pe=P(1)P(0/1)+P(0)P(1/0)
- 在A和 σ n 2 \sigma_n^2 σn2一定的条件下,可以找到一个使误码率最小的判决门限电平,称为最佳门限电平。
V d ∗ = σ n 2 2 A l n P ( 0 ) P ( 1 ) V_d^*=\frac{\sigma_n^2}{2A}ln\frac{P(0)}{P(1)} Vd∗=2Aσn2lnP(1)P(0)
- 当发送0和1的概率相同时,最佳门限电平为0,总误码率为
P e = 1 2 e r f c ( A 2 σ n ) P_e=\frac12erfc(\frac A{\sqrt2\sigma_n}) Pe=21erfc(2σnA)
如果发送概率相等,且在最佳门限电平下,双极性基带系统的总误码率仅依赖于信号峰值A与噪声均方值 σ n \sigma_n σn的比值,与采用什么样的信号形式无关,且比值越大,误码率越小。
6.5.2二进制单极性基带系统
- 最佳门限电平为
V d ∗ = A 2 + σ n 2 A l n P ( 0 ) P ( 1 ) V_d^*=\frac A2+\frac{\sigma_n^2}{A}ln\frac{P(0)}{P(1)} Vd∗=2A+Aσn2lnP(1)P(0)
- 当发送1和0为等概率时,
V d ∗ = A 2 P e = 1 2 e r f c ( A 2 2 σ n ) V_d*=\frac A2\\ P_e=\frac12erfc(\frac A{2\sqrt2\sigma_n}) Vd∗=2APe=21erfc(22σnA)
- 当信号峰值A与噪声均方值 σ n \sigma_n σn的比值相同时,双极性基带系统的抗噪声性能优于单极性系统,对于单极性基带系统,信道特性的改变会改变A的大小,从而影响判决门限。
6.6眼图
是指通过用示波器观察接收端的基带信号波形,从而估计和调整系统性能的一种实验方法。
具体做法:用一个示波器跨接在抽样判决器的输入端,调整示波器水平扫描周期和接收码元的周期同步。( T c = T B T_c=T_B Tc=TB)
- 当存在噪声时,眼图的线迹会变成模糊的带状线,噪声越大,线条越粗,越模糊,眼睛张开的越小。
-
最佳抽样时刻是眼睛张开最大的时刻。
-
定时误差灵敏度是眼图斜边的斜率。斜率越大,对位定时误差越敏感。
-
阴影区的垂直高度表示抽样时刻上信号受噪声干扰的畸变程度。
-
抽样时刻上下阴影区的间隔距离之半为噪声容限。
-
噪声影响线粗,ISI影响眼图端正。
-
二进制双极性波形,一个码元周期内只能看到一个眼睛,M进制双极性波形,则有(M-1)个眼睛。
6.7部分响应和时域均衡
- 两种改善系统性能的措施:针对提高频带利用率而采用部分响应技术。针对减小码间串扰而采用的时域均衡技术。
6.7.1部分响应系统
- 奈奎斯特第二准则:人为地、有规律地在码元抽样时刻引入码间串扰,并在接收端判决前加以消除,可以改善频谱特性,达到理论上最大频带利用率。
1.第I类部分响应波形
- 因为相距一个码元周期的"sinx/x"波形拖尾正负相反,所以将两个间隔为一个码元周期的合成波形代替原波形。合成后的波形时域表达式为:
g ( t ) = 4 π ( c o s π t / T B 1 − 4 t 2 / T B 2 ) g(t)=\frac4\pi(\frac{cos\pi t/T_B}{1-4t^2/T_B^2}) g(t)=π4(1−4t2/TB2cosπt/TB)
- 频域表达式为
G ( ω ) = { 2 T B c o s ω T B 2 ∣ ω ∣ ≤ π T B 0 ∣ ω ∣ > π T B G(\omega)= \begin{cases} 2T_Bcos\frac{\omega T_B}{2}&|\omega|\le\frac{\pi}{T_B}\\ 0&|\omega|>\frac{\pi}{T_B} \end{cases} G(ω)={2TBcos2ωTB0∣ω∣≤TBπ∣ω∣>TBπ
- 在抽样判决时刻,仅发生前一个码元对该码元的干扰,其他码元并不产生串扰。
- 设有二进制码元序列 a k {a_k} ak,其中 a k {a_k} ak可以取+1和-1,则接受波形在相应时刻上的抽样值为
C k = a k + a k − 1 C_k=a_k+a_{k-1} Ck=ak+ak−1
所以可以根据当前的抽样值和上一个码元周期的真实值,判断当前码元的真实值。但是会出现差错传播,如果其中一个码元传输错误,则其后面的所有码元都会判别错误,因为这是一种相关编码。
为了避免相关编码的差错传播,可以进行预编码。在发送相关编码之前进行
b
k
=
a
k
(
模二加
)
b
k
−
1
b_k=a_k(模二加)b_{k-1}
bk=ak(模二加)bk−1
之后发送
C
k
=
b
k
+
b
k
−
1
C_k=b_k+b_{k-1}
Ck=bk+bk−1
对接收到的Ck进行模二处理,直接得到当前码元信息,而不需要知道上一个码元信息。
部分响应信号是由预编码器、相关编码器、发送滤波器、信道和接收滤波器共同产生的。如果相关编码器输出为 δ \delta δ脉冲序列,则发送滤波器、信道和接收滤波器应为理想低通特性。
2.部分响应的一般形式
- 时域形式为N个相继间隔为 T B T_B TB的sinx/x的波形之和
g ( t ) = ∑ n = 1 N − 1 R n s i n π T B ( t − n T B ) π T B ( t − n T B ) g(t)=\sum_{n=1}^{N-1}R_n\frac{sin\frac\pi{T_B}(t-nT_B)}{\frac\pi{T_B}(t-nT_B)} g(t)=n=1∑N−1RnTBπ(t−nTB)sinTBπ(t−nTB)
- 频谱函数为
G ( ω ) = { T B ∑ m = 1 N R m e − j ω ( m − 1 ) T B ∣ ω ∣ ≤ π T B 0 ∣ ω ∣ > π T B G(\omega)= \begin{cases} T_B\sum_{m=1}^NR_me^{-j\omega(m-1)T_B}&|\omega|\le\frac\pi{T_B}\\ 0&|\omega|>\frac\pi{T_B} \end{cases} G(ω)={TB∑m=1NRme−jω(m−1)TB0∣ω∣≤TBπ∣ω∣>TBπ
其中,Rn为加权系数,取整数。
- 常用的五类部分响应波形
类别 | R 1 R_1 R1 | R 2 R_2 R2 | R 3 R_3 R3 | R 4 R_4 R4 | R 5 R_5 R5 | 二进制输入时CR的电平数 |
---|---|---|---|---|---|---|
0 | 1 | 2 | ||||
I | 1 | 1 | 3 | |||
II | 1 | 2 | 1 | 5 | ||
III | 2 | 1 | -1 | 5 | ||
IV | 1 | 0 | -1 | 3 | ||
V | -1 | 0 | 2 | 0 | -1 | 5 |
- 当输入为L进制信号时,经部分响应传输系统得到的第I类和第IV类部分响应信号的电平数为(2L-1)。
- 优点:实现理论最大频带利用率,且传输波形的尾巴衰减大、收敛快。
- 缺点:输入数据为L进制时,部分响应波形的相关编码电平要超过L个,在同样输入信噪比条件下,部分响应系统的抗噪声性能要比0类相应系统差。
6.7.2时域平衡
均衡器:为了减小码间串扰的影响,在系统中插入的一种用来校正或补偿系统特性的可调滤波器。
均衡器可以分为时域均衡器和频域均衡器。
- 时域均衡原理
-
直接校正已失真的响应波形。
-
在接收滤波器和抽样判决器之间插入一个称之为横向滤波器的可调滤波器 T ( ω ) T(\omega) T(ω),使得
-
T ( ω ) H ( ω ) = H ′ ( ω ) T(\omega)H(\omega)=H'(\omega) T(ω)H(ω)=H′(ω)
H ′ ( ω ) H'(\omega) H′(ω)能满足等效理想低通特性。
-
横向滤波器的网络由无限多的横向排列的延迟单元 T B T_B TB和抽头加权系数 C n C_n Cn组成,其功能是利用它产生的无限多个响应波形之和,将接收滤波器输出端抽样时刻上有码间串扰的相应波形转换成抽样时刻上无码间串扰的波形。
-
- 横向滤波器的特性取决于抽头系数,如果$C_n$可调,甚至自动调整,则可以动态校正系统响应。
- **理论上横向滤波器无限长就可以完全消除ISI,但实际上有限的横向滤波器只能无限接近完全消除。**
-
均衡准则与实现
-
可以用峰值失真和均方失真来衡量均衡的效果
-
峰值失真:码间串扰最大可能值与有用信号样值之比。
-
D = 1 y 0 ∑ k = − ∞ k ≠ 0 ∞ ∣ y k ∣ D=\frac1{y_0}\sum_{ \begin{align} k=-\infty\\ k\ne0 \end{align} }^{\infty}|y_k| D=y01k=−∞k=0∑∞∣yk∣
-
均方失真:
-
e 2 = 1 y 0 2 ∑ k = − ∞ k ≠ 0 ∞ y k 2 e^2=\frac1{y_0^2}\sum_{ \begin{align} k=-\infty\\ k\ne0 \end{align} }^{\infty}y_k^2 e2=y021k=−∞k=0∑∞yk2
-
-
最小峰值法-迫零调整法
-
将未均衡前的输入归一化,样值也归一化,则输入峰值失真可以表示为
-
D = ∑ k = − ∞ , k ≠ 0 ∞ ∣ ∑ i = − N , i ≠ 0 N C i ( x k − 1 − x k x − i ) + x k ∣ D=\sum_{ k=-\infty, k\ne0 }^{\infty}|{\sum_{ i=-N, i\ne 0 }^{N}C_i(x_{k-1}-x_kx_{-i})+x_k}| D=k=−∞,k=0∑∞∣i=−N,i=0∑NCi(xk−1−xkx−i)+xk∣
-
要求解使D最小的 C i C_i Ci,因为如果初始失真 D 0 < 1 D_0<1 D0<1,则D的最小值必然发生在 y 0 y_0 y0前后的 y k y_k yk都等于零的情况,所以 { C i } \{C_i\} {Ci}应为
-
$$
\begin{cases}
\sum_{i=-N}^NC_ix_{k-i}=0&k=\pm1,\pm2,\cdots,\pm N\
\sum_{i=-N}^NC_ix_{-i}=1&k=0\end{cases}
$$ -
只有k=0时,为样本值,其他情况均被迫零调整。
-
多种实现方法中最简单的一种:预置式自动均衡器,输入端每隔一段时间送入一个来自发端的测试单脉冲波形。
-
-
最小均方失真法自适应均衡器
-
按最小峰值失真设计的均衡器缺陷:必须 D 0 < 1 D_0<1 D0<1,而采用均方失真法时没有此限制。
-
-
上面是一个三抽头自适应均衡器,自适应均衡器的抽头系数可以自适应调节,不需要预调时间。
-
经典的自适应均衡器算法:迫零算法、最小均方误差算吗、递推最小二乘算法、卡尔曼算法。
-
横向滤波器是一种线性均衡器。目前还有非线性均衡器和算法,如判决反馈均衡、最大似然符号检测、最大似然序列估值。
-