RVC克隆自己的声音并令其唱歌

克隆自己的声音并令其唱歌

准备工作

  1. 浏览器
  2. 声音文件,建议5分钟左右的清晰说话声音
  3. autodl 网站(https://www.autodl.com/console/instance/list)上充个两块钱

正式开始

  1. 在autodl上租用实例,这里以3080ti为例,镜像在社区镜像中搜索rvc,选择v3版本即可请添加图片描述

  2. 将镜像的详情页也打开,等会要用,也可以看看其介绍(https://www.codewithgpu.com/i/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/RVC_WebUI)

  3. 机器创建完成后可以看见实例列表,点autopanel上方的jupyterlab

  4. 再打开刚才的镜像详情页拷贝启动代码,看到端口号就是启动成功了

cd /root/Retrieval-based-Voice-Conversion-WebUI && python infer-web.py --port 6006
  1. 在左侧菜单树里新建一个文件夹,这里以新建/imoo文件夹为例,接着将你的声音文件放到这个文件夹下
    请添加图片描述

  2. 回到实例列表,点击jupyterlab的自定义服务
    在这里插入图片描述

  3. 进入训练页面,填写必要信息
    在这里插入图片描述

  • 实验名:一会你生成的声音文件的名字
  • 文件夹路径:/root/你刚才下载文件的地方,默认是 /root/auto-tmp
  • 训练轮数:20够用,追求更好效果就开大点
  1. 点击开始训练,就会开始跑了,可以回到刚才的jupyterlab查看具体日志
    在这里插入图片描述

  2. 训练完成后,你可以在jupyterlab的/Retrieval-based-Voice-Conversion-WebUI/weights/找到训练结果,尾缀为.pth,这就是你的声音文件,将其下载到本地
    在这里插入图片描述

  3. 在 https://www.weights.gg/zh/create 上传自己的声音文件后,即可使用声音文件唱歌或说话,如果不想排队可以下载专门的软件Replay,网址是 https://www.tryreplay.io/,不过它内部下载很慢

### RVC声音模型简介 RVC(Retrieval-based Voice Conversion)是一种基于检索的声音转换技术,能够通过训练特定歌手的干音数据来生成高度相似的人声效果。这项技术不仅支持单个歌手的声音克隆,还能够实现跨歌手的声音合成、性别转换以及多种音色融合的效果[^1]。 ### RVC声音模型的功能特点 #### 1. **音乐干声分离** 利用音频处理工具,可以从原始录音文件中提取干净的人声部分(即干声),去除背景音乐和其他干扰信号。这是构建高质量RVC模型的基础步骤之一[^2]。 #### 2. **训练个人音色模型** 用户可以通过收集目标人物的大量干声样本,将其输入到RVC框架下进行训练,从而得到专属于该人的音色模型。这种模型可用于模仿其演唱风格或其他语音表达形式。 #### 3. **男女换声(伪音)** 借助深度学习算法的力量,RVC允许用户将自己的声音实时转化为另一性别的嗓音特性,比如男性转女性或者反之亦然。 #### 4. **AI唱歌** 经过适当调整参数设置之后,经过良好训练过的RVC系统甚至可以尝试完成简单的歌曲演绎任务;不过为了追求更佳的艺术表现力,在最终输出前通常还需要经历一番细致的手动微调过程。 #### 5. **音色融合** 当两个及以上不同的源材料被共同送入同一个神经网络结构内部时,则有可能创造出一种全新类型的混合型态出来——它既保留了原有各个组成部分的主要特质又具备了一些独特的新属性。 ### 获取与安装指南 对于希望体验或深入研究此项前沿科技的朋友来说,这里提供了一个便捷途径:访问网站“妙音工坊”(https://klrvc.com/)即可找到许多已预先制作完毕可供直接使用的免费版本资源链接地址。此外还有详细的官方文档说明可以帮助初学者快速上手操作流程。 ```bash # 安装依赖环境 (以Python为例) pip install torch numpy scipy ffmpeg-python pyworld onnxruntime-gpu gradio ``` 上述命用于准备必要的软件包集合以便顺利运行整个程序逻辑链条中的每一个环节。 ### 注意事项 尽管这些强大的功能人兴奋不已,但在实际应用过程中也应当严格遵守当地法律法规关于版权保护等方面的规定,避免侵犯他人合法权益的行为发生。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值