深度学习-神经网络编程使用过程中的问题汇总。

1.pip安装下载速度慢,不稳定容易失败等问题。

第一个方法是改变下载源

pip install selenium -i http://pypi.douban.com/simple/

还有多个其他下载源清华的下载源好像不能用了,推荐豆瓣的或者阿里的

阿里:Simple Index

 第二个办法,在用户界面创建pip文件夹,并编写pip.ini文件,一劳永逸直接永远更改pip下载源,不用输入下载网址

目录:C:\Users\Administrator\pip

创建pip.ini,内容复制下方代码:

[global]
index-url = http://mirrors.aliyun.com/pypi/simple
[install]
use-mirrors =true
mirrors =http://mirrors.aliyun.com/pypi/simple/
trusted-host =mirrors.aliyun.com

2.出现版本不符问题

ERROR: Could not find a version that satisfies the requirement tensorflow-gpu==1.13.2 (from versions: none)
ERROR: No matching distribution found for tensorflow-gpu==1.13.2

解决办法:Python版本过高,降低版本,TensorFlow目前仅支持3.5和3.6的,卸载高版本安装低版本即可正常安装。

如Python3.6配置TensorFlow及Keras

进入cmd用conda进行安装

conda create –n tensorflow-gpu python=3.6
activate tensorflow-gpu 
pip install tensorflow-gpu==1.13.2
pip install keras==2.1.5

3.域名信任问题

WARNING: The repository located at mirrors.aliyun.com is not a trusted or secure host and is being ignored. If this repository is available via HTTPS we recommend you use HTTPS instead, otherwise you may silence this warning and allow it anyway with '--trusted-host mirrors.aliyun.com'.

解决办法 :通常会和第2个问题一起出现,因为国外源下载太慢,通常会采用pip install tensorflow-gpu==1.13.2进行安装,但因信任问题会报第一个错误,解决办法,修改命令语句为:

pip install tensorflow-gpu==1.13.2 --trusted-host mirrors.aliyun.com

4.浏览器下载Anconada,Cuda,Python等等各种软件下载速度过慢

解决办法:从国外官网github下载各种软件安装包项目太慢怎么办_如何心安理得的在老板眼皮下摸鱼-CSDN博客

5.HDF5问题

The HDF5 header files used to compile this application do not match
the version used by the HDF5 library to which this application is linked.
Data corruption or segmentation faults may occur if the application continues.
This can happen when an application was compiled by one version of HDF5 but
linked with a different version of static or shared HDF5 library.
You should recompile the application or check your shared library related
settings such as 'LD_LIBRARY_PATH'.
You can, at your own risk, disable this warning by setting the environment
variable 'HDF5_DISABLE_VERSION_CHECK' to a value of '1'.
Setting it to 2 or higher will suppress the warning messages totally.
解决办法:一是按照它的提示设置环境变量,二是升级HDF5版本。

pip install h5py==2.10.0

5.训练时报Tensorflow训练之Allocator (GPU_0_bfc) ran out of memory trying to allocate 1.00MiB.

解决办法:减小batch_size大小,原则上为2的次方

6.虽说tensorflow-gpu较cpu版本表现更加强大,但是在训练一些小的数据时候可能cpu版本表现更加优异,所以有时候会根据需求选择不同版本来跑,切换方法:

import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"

加入上方代码表示使用cpu版本训练,不加表示默认gpu训练。

7.安装CUDA失败

解决办法:有可能时电脑本身安装了VSCODE,然后在安装的时候又重复勾选了导致报错,解决步骤是在安装时选择自定义安装,取消VSCODE选项即可。
没有安装VSCODE的情况下,进入c盘的program文件夹,删除 NVIDIA CorporationNVIDIA GPU Computing Toolkit之后重启,再重新安装即可。

8.报错:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2

解决办法:在代码前方加上以下代码
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

9.报错:UnknownError (see above for traceback): Failed to get convolution algorithm. This is probably because cuDNN failed to initialize。

failed to allocate 2.92G (3134017792 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY

解决办法:显存报错不足,但是实际够用,keras加入下列代码

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
config = tf.compat.v1.ConfigProto(allow_soft_placement=True)

config.gpu_options.per_process_gpu_memory_fraction = 0.3
tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))

tensorflow加入下列代码

from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession

config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)

10.用from libtiff import TIFF导入报错:ModuleNotFoundError: No module named 'libtiff'

解决办法:libtiff在conda下载不了,用pip安装,先去https://www.lfd.uci.edu/~gohlke/pythonlibs/#pylibtiff下载对应python版本的libtiff,然后用命令pip install +下载的libtiff路径进行本地安装。如果下载的版本和python不对应会报错:ERROR: libtiff-0.4.2-cp35-cp35m-win_amd64.whl is not a supported wheel on this platform.

11.用pip安装时报错:error: Microsoft Visual C++ 14.0 is required. Get it with "Build Tools for Visual Studio": https://visualstudio.microsoft.com/downloads/

解决办法:下载对应的Microsoft visual c++ 14.0:http://go.microsoft.com/fwlink/?LinkId=691126,下载安装好了之后重新进行pip安装即可。

12.报错ModuleNotFoundError: No module named 'keras_contrib'

用下面命令进行安装

pip install git+https://www.github.com/keras-team/keras-contrib.git

13. 从自己建立的项目下的某一个文件夹导入或引用某个python文件时报错

解决办法:打开settings,进入project structure,将对应的某个文件夹表示成源文件,Sources。

14. 报错ImportError: DLL load failed:

解决办法:先重启一遍试试,如果没有解决,一定是版本不对应,检查CUDA,CUDNN,Tensorflow或者Pytorch版本之间的对应关系。

15.明明安装了XX包,如pandas,numpy,但是运行的时候还是报错找不到这些模块

解决办法:当前项目使用的环境和你安装这些包的环境不一样,将环境切换为有包的环境,或者在当前项目下进行包的安装。

16.在对pip进行更新之后,报错ModuleNotFoundError: No module named 'pip',无法使用pip命令

解决办法:输入下列命令强制更新

python -m ensurepip
python -m pip install --upgrade pip

17.github进不去,登录超时无响应

解决办法:cmd ping一下github.com,将ping通的ip地址复制,打开C:\Windows\System32\drivers\etc下的hosts文件,将ip地址+github.com添加到最后一行。如果自己电脑ping不通,就去http://tool.chinaz.com/dns在这里面输入github.com,然后复制一个TTL较小的ip,加上github.com就可以进去了。

18.报错OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.

解决办法:加入下列语句

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

19. TensorFlow使用TensorBoard、Pytorch使用TensorBoardX时报错TensorFlow installation not found - running with reduced feature set. usage: tensorboard [-h] [--helpfull] {serve,dev} ... tensorboard: error: invalid choice: 'logdir' (choose from 'serve', 'dev'),或者生成的表中没有数据No scalar data was found.

解决办法:确保TensorFlow与TensorBoard,Pytorch与TensorBoardX版本一致,不一致的卸载重装即可。.

20. 报错ModuleNotFoundError: No module named 'past'

解决办法:没有past这个包,只要安装future就好了

pip install future

21.报错TypeError: torch.nn.modules.activation.Tanh is not a Module subclass

解决办法:经过仔细检查,发现是因为我的激活函数没有加括号,这波大意了啊

改成torch.nn.Tanh()就好了

22.使用TensorBoardX报错ModuleNotFoundError: No module named 'tensorboard'

解决办法:pip install tb-nightly

23.远程访问服务器的Linux环境(向日葵,TeamViewer等),界面中使用鼠标、键盘发生错乱,不受控制,且出现多个鼠标闪烁,原因是在原界面可能使用了截图等快捷键,导致在远程控制软件里发生了冲突

解决办法:在Linux环境下按Alt+Insert,就可以恢复正常了

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值