动态规划解决01背包问题

问题描述:简单的说就是容量为c的背包,有n个物品,物品i的重量为wi,其价值为vi,问要如何选择装入物品使得背包中物品总价值最大?(在选择装入背包的物品时,对于每个物品i都只有两种选择,装入或者不装入,不能将一个物品装入多次,更不能将物品拆分成部分装入)

状态递归方程:m(i,j)=max{m(i+1,j),m(i+1,j-wi)+vi}(装入)                                                                                              

                                =m(i+1,j)(不装入)

具体程序:

#include<stdio.h>
#include<iostream>
#include<iomanip>
using namespace std;
int m[10][50];
int x[10]={-1};
#define min(a,b) a<b?a:b
#define max(a,b) a>=b?a:b

int Knapsack(int v[],int w[],int c,int n)
{//此方法从n=1计算
    int jMax=min(w[n]-1,c);
    for(int j=0;j<=jMax;j++)
        m[n][j]=0;//j<当前背包容量或者当前物品重量时
    for(int j=w[n];j<=c;j++)
        m[n][j]=v[n];//当前背包容量可以装得下时

    for(int i=n-1;i>1;i--)
    {
        jMax=min(w[i]-1,c);
        for(int j=0;j<=jMax;j++)
            m[i][j]=m[i+1][j];
        for(int j=w[i];j<=c;j++)
           m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//当前背包容量装得下,但是要判断其价值是否最大,确定到底装不装
    }
   //先假设1物品不装
    if(c>=w[1])//可以不要这个if语句将上面for语句的条件改为i>=1也可以
        m[1][c]=max(m[1][c],m[2][c-w[1]]+v[1]);//根据价值,判断到底装不装
    return m[1][c];//返回最优值
}
void Traceback(int w[],int c,int n)
{//根据最优值,求最优解
    for(int i=1;i<n;i++){
        if(m[i][c]==m[i+1][c])
            x[i]=0;
        else {
            x[i]=1;
            c-=w[i];
        }
    }
    x[n]=m[n][c]?1:0;//可以删掉这条语句,将上面for语句n改为n+1,我是为了和课本程序保持一致没有删改
}

 int main(){
    int weight[6]={0,2,2,6,5,4};//最低位补了0,从weight[1]开始赋值
    int value[6]={0,6,3,5,4,6};
    int c=10;
    cout<<"总价值最大为:"<<Knapsack(value,weight,c,5)<<endl;
    Traceback(weight,c,5);
    cout<<"最优值的解:";
    for(int i=1;i<5+1;i++)
        cout<<x[i]<<" ";
    cout<<endl;
    for(int i=1;i<6-1;i++){
        for(int j=1;j<11;j++)
        {
           cout<<std::left<<setw(5)<<m[i][j];
        }
        cout<<endl;
    }
    return 0;

 }

 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值