HDR数据集

前言

研究生期间在做HDR图像重建算法,核心参考是《Deep Recursive HDRI: Inverse Tone Mapping using Generative Adversarial Networks》,里面涉及到一些数据集的下载、评价指标的计算还是有一点麻烦的,所以我在这儿把相关资料与链接列出来,供大家使用。

一、HDR数据集(含下载链接)

  1. VDS数据集

      (Deep Chain HDRI创建的HDR数据集,也是Deep Recursive HDRI用到的核心数据集)

        官方链接:点击此处

        网盘链接: 点击此处,提取码:sdf2

        PS:官方链接里还有不少相关资源,而且下载也挺快的

2. HDREye数据集

        出自文章《VISUAL ATTENTION IN LDR AND HDR IMAGES》

        官方链接:点击此处

        网盘链接:点击此处,提取码:zhyt

        PS:官方下载有点麻烦,是用ftp下载,想要批量下载还得配置wget,下的还很慢,推荐网盘下载。

3. HDRStereo数据集

        做双目相机的HDR算法会用到该数据集,比如《NEW STEREO HIGH DYNAMIC RANGE IMAGING METHOD USING GENERATIVE ADVERSARIAL NETWORKS》等。

        该数据集是Middlebury dataset数据集的一部分(2005和2006两个数据集按照上面论文设置重新划分文件夹的结果)。

        Middlebury dataset:点击此处

        HDRStereo数据集:点击此处,提取码:j7pj

二、HDR评价工具

Python:PSNR、SSIM、MS-SSIM、Debevec、Reinhard TMO、kk TMO、HDR-VDP等的批处理工具,整理完一起上传

三、其他资源

有价值的HDR资源

1. HDRToolbox:点击此处(Matlab)

        matlab方便快捷,不用配环境,里面工具很多,包括图像融合、HDR融合、色调映射等等,不过批处理需要自己写。

2. HDR论文合辑:(1)点击此处(2)点击此处

3. HDR数据集合辑点击此处

4. 八皇后问题:点击此处

### HDR图像增强数据集下载 对于HDR图像增强的研究和开发工作,获取合适的数据集至关重要。文中提到的一个重要资源涉及低照度图像数据集,在该研究中采用了多曝光融合(MEF)技术和高动态范围成像(HDR)技术来构建参考图像库[^2]。 具体而言,此数据集中包含了由1200组不同的序列通过13种不同类型的MEF/HDR算法组合产生的共计15,600张融合图片。最终经过严格挑选留下了589幅具有较高质量的参考图及其对应的原始序列,总计包含4,413张照片。这些高质量样本可以作为训练模型的理想选择之一。 为了获得这样的数据集,通常可以通过以下几种方式: - **学术论文附带资源**:许多研究人员会在发表成果的同时公开所使用的数据集链接或提供下载途径。 - **在线数据库平台**:一些知名的计算机视觉领域网站如ImageNet、COCO等可能收录了类似的HDR/MEF数据集合;另外还有专门针对特定应用领域的资料库比如CVPR Workshop on Low-Light Image Enhancement and Beyond也可能是潜在来源。 - **开源项目仓库**:GitHub或其他代码托管平台上经常会有开发者分享自己整理好的数据集供他人学习交流之用。 值得注意的是,并不是所有的HDR数据集都适用于低光照条件下的图像增强任务,所以在选择时应当仔细阅读文档说明并确认其适用性。 ```bash # 假设找到了一个合适的HDR数据集URL wget https://example.com/path/to/hdr_dataset.zip unzip hdr_dataset.zip -d ./dataset/ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值