如图所示有一个分类器,可以预测是否为汉堡的图片。
1. 分类器到底分对了多少?
2.返回的图片中正确的有多少?
3.有多少张应该返回的图片没有找到?
以上三个问题即对应了准确率,精确率和召回率。
其中
accuracy=(1+5)/(1+2+1+5)
precision = 1/(1+2)
recall = 1/(1+1)
而在不同的模型中,侧重不同的评估指标,例如预测病人是否有病,那则不能放过一个病人,于是更看重召回率。当然也有一些领域更看重精准率,比如一些搜索引擎,为提高效率,更看重精准率,即你所搜到的就是你想要的。
由于这两个指标侧重点不同,F1值便是精准率和召回率的调和。