Accuracy(准确率)Precision(精准率)Recall(召回率) F1值

如图所示有一个分类器,可以预测是否为汉堡的图片。

1. 分类器到底分对了多少?

2.返回的图片中正确的有多少?

3.有多少张应该返回的图片没有找到?

以上三个问题即对应了准确率,精确率和召回率。

其中

accuracy=(1+5)/(1+2+1+5)

precision = 1/(1+2)

recall = 1/(1+1)

而在不同的模型中,侧重不同的评估指标,例如预测病人是否有病,那则不能放过一个病人,于是更看重召回率。当然也有一些领域更看重精准率,比如一些搜索引擎,为提高效率,更看重精准率,即你所搜到的就是你想要的。

由于这两个指标侧重点不同,F1值便是精准率和召回率的调和。

小萌5分钟

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值