高数学习笔记(一):常用重要概念

高数-常用重要概念

高数理论体系的搭建和相关概念阐述

一、实数的相关概念

高数中最基本的原料就是‘实数’。

  • 自然数集合:N={1,2,3,4,…};
  • 整数集合:Z={0,±1,±2,±3,…};
  • 有理数集合:Q={ m n \frac{m}{n} nm|m,n∈Z,n≠0};
  • 实数集合:R={有理数+无理数};
    实数集合具有完备性、稠密性的特点。
势的相关概念

有限元素:比较个数;
无限元素:找是否存在一种一一对应。
整数个数=自然数个数=有理数个数,即 ϕ \phi ϕ(N)= ϕ \phi ϕ(Z)= ϕ \phi ϕ(Q).
可数
一个集合,如果其元素个数和自然数一样多的话,那就是可数个。整数是可数个,有理数是可数个,二维空间的有理点也是可数个。
可数并不代表着有限,无限中的某一类叫可数。
实数的个数远大于整数个数。实数个数不可数。

二、极限

序列极限定义

∀ ϵ \forall \epsilon ϵ ∃ N 0 \exist N_0 N0,只要n> N 0 N_0 N0,则有| f ( x ) − L f(x)-L f(x)L|< ϵ \epsilon ϵ
 — lim ⁡ n → ∞ f ( n ) = L \displaystyle \lim_{n\to \infty}f(n)=L nlimf(n)=L
 — 要想任意近,只要足够近。

  • eg: 证明 lim ⁡ n → ∞ 1 n = 0 \displaystyle \lim_{n\to \infty}\frac{1}{n}=0 nlimn1=0
    证:
    对于 ∀ ϵ \forall \epsilon ϵ,寻找是否存在 N 0 N_0 N0,使得 ∣ 1 n − 0 ∣ < ϵ |\frac{1}{n}-0|<\epsilon n10<ϵ恒成立。
    也即:当 N 0 = [ 1 ϵ ] + 1 N_0=[\frac{1}{\epsilon}]+1 N0=[ϵ1]+1时,
    ∀ ϵ \forall \epsilon ϵ ∃ N 0 \exist N_0 N0,只要n> N 0 N_0 N0,则有 lim ⁡ n → ∞ 1 n = 0 \displaystyle \lim_{n\to \infty}\frac{1}{n}=0 nlimn1=0

三、夹逼定理

夹逼定理

∃ a n 、 b n 、 c n \exist a_n、b_n、c_n anbncn,且满足:
 对 ∀ ϵ , ∃ N 1 , lim ⁡ n → ∞ a n = L ; ∃ N 2 , lim ⁡ n → ∞ c n = L \forall \epsilon ,\exist N_1,\displaystyle\lim_{n \to \infty}a_n=L;\exist N_2,\displaystyle\lim_{n \to \infty}c_n=L ϵ,N1,nliman=L;N2,nlimcn=L
则有:对 ∀ ϵ , ∃ N 0 , lim ⁡ n → ∞ b n = L \forall \epsilon ,\exist N_0,\displaystyle\lim_{n \to \infty}b_n=L ϵ,N0,nlimbn=L

— 绕开极限的直接定义得到极限的方式

  • eg: 证明 lim ⁡ n → ∞ a n n ! = 0 \displaystyle \lim_{n\to \infty}\frac{a^n}{n!}=0 nlimn!an=0
    证:
    需证明:对于 ∀ ϵ \forall \epsilon ϵ,寻找是否存在 N 0 N_0 N0,使得 ∣ a n n ! − 0 ∣ < ϵ |\frac{a^n}{n!}-0|<\epsilon n!an0<ϵ恒成立。
    (1).用序列定义证明:
     发现无法直接求解使得 ∣ a n n ! − 0 ∣ < ϵ |\frac{a^n}{n!}-0|<\epsilon n!an0<ϵ成立的n值。
    (2).用夹逼定理证明:
     对于 ∀ ϵ \forall \epsilon ϵ,寻找是否存在 N 0 、 a n 、 c n N_0、a_n、c_n N0ancn,使得满足
      a). a n < 0 a_n<0 an<0 c n < 0 c_n<0 cn<0;
      b). a n < a n n ! < c n a_n<\frac{a^n}{n!}<c_n an<n!an<cn恒成立。
    那么解题的关键就变成如何构造出合适的 a n 、 c n a_n、c_n ancn
    构造得: a n = 0 、 c n = A a n a_n=0、c_n=A\frac{a}{n} an=0cn=Ana
    c n c_n cn的构造:
    a n n ! = a ∗ a ∗ a ∗ . . . . ∗ a 1 ∗ 2 ∗ 3 ∗ . . . . n = a 1 ∗ a 2 ∗ a 3 ∗ . . . . a n \frac{a^n}{n!}=\frac{a*a*a*....*a}{1*2*3*....n}=\frac{a}{1}*\frac{a}{2}*\frac{a}{3}*....\frac{a}{n} n!an=123....naaa....a=1a2a3a....na
    此连乘式中,对于前半部分a>n, a n > 1 \frac{a}{n}>1 na>1;对于后半部分a<n, a n < 1 \frac{a}{n}<1 na<1。所以将 a n n ! \frac{a^n}{n!} n!an放大为 A a n A\frac{a}{n} Ana,其中A=连乘式前半部分a>n之积、 a n \frac{a}{n} na是最后一项,保证了 c n c_n cn n → ∞ n\to\infty n处的值 → \to 0。
    也即:当 N 0 = [ 1 ϵ ] + 1 N_0=[\frac{1}{\epsilon}]+1 N0=[ϵ1]+1时,
    ∀ ϵ \forall \epsilon ϵ ∃ N 0 \exist N_0 N0,只要n> N 0 N_0 N0,则有 lim ⁡ n → ∞ 1 n = 0 \displaystyle \lim_{n\to \infty}\frac{1}{n}=0 nlimn1=0
无穷大阶之间的比较

1 < log ⁡ a 4 n < n 1 a 3 < n < n a 1 < a 2 n < n ! < n n 1<\log_{a_4} n<n^\frac{1}{a_3}<n<n^{a_1}<{a_2}^n<n!<n^n 1<loga4n<na31<n<na1<a2n<n!<nn

四、极限的四则运算

a n a_n an b n b_n bn,均满足:
∀ ϵ \forall \epsilon ϵ ∃ N 0 \exist N_0 N0,只要n> N 0 N_0 N0,则有 lim ⁡ n → ∞ a n = A \displaystyle \lim_{n\to \infty}a_n=A nliman=A lim ⁡ n → ∞ b n = B \displaystyle \lim_{n\to \infty}b_n=B nlimbn=B成立。
则有:

c n = a n + b n c_n=a_n+b_n cn=an+bn lim ⁡ n → ∞ c n = A + B \displaystyle \lim_{n\to \infty}c_n=A+B nlimcn=A+B;
c n = a n − b n c_n=a_n-b_n cn=anbn lim ⁡ n → ∞ c n = A − B \displaystyle \lim_{n\to \infty}c_n=A-B nlimcn=AB;
c n = a n ∗ b n c_n=a_n*b_n cn=anbn lim ⁡ n → ∞ c n = A ∗ B \displaystyle \lim_{n\to \infty}c_n=A*B nlimcn=AB;
c n = a n b n c_n=\frac{a_n}{b_n} cn=bnan lim ⁡ n → ∞ c n = A B ( B ≠ 0 ) \displaystyle \lim_{n\to \infty}c_n=\frac{A}{B} (B≠0) nlimcn=BA(B=0);

未完待续…

  • 序列极限
    在这里插入图片描述在这里插入图片描述
  • 夹逼定理
    在这里插入图片描述在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值