常用等价无穷小
- s i n x sinx sinx ~ x x x
- t a n x tanx tanx ~ x x x
- a r c s i n x arcsinx arcsinx ~ x x x
- a r c t a n x arctanx arctanx ~ x x x
- l n ( 1 + x ) ln(1+x) ln(1+x) ~ x x x
- 1 − c o s a x 1-cos^ax 1−cosax ~ a 2 x 2 \frac a2x^2 2ax2
- e x − 1 e^{x}-1 ex−1 ~ x x x
- a x − 1 a^{x}-1 ax−1 ~ x l n a xlna xlna
- ( 1 + x ) a − 1 (1+x)^a-1 (1+x)a−1 ~ a x ax ax
- x − l n ( 1 + x ) x-ln(1+x) x−ln(1+x) ~ 1 2 x 2 \frac12x^2 21x2
- 1 − x 2 − 1 \sqrt{1-x^2}-1 1−x2−1 ~ − 1 2 x 2 -\frac12x^2 −21x2
- s e c x − 1 secx-1 secx−1 ~ 1 2 x 2 \frac12x^2 21x2
- t a n x − s i n x tanx-sinx tanx−sinx ~ 1 2 x 3 \frac12x^3 21x3
一些公式
- 1 − c o x c o s 2 x c o s 3 x = ( 1 − c o x ) + c o x ( 1 − c o s 2 x ) + c o x c o s 2 x ( 1 − c o s 3 x ) 1-coxcos2xcos3x=(1-cox)+cox(1-cos2x)+coxcos2x(1-cos3x) 1−coxcos2xcos3x=(1−cox)+cox(1−cos2x)+coxcos2x(1−cos3x)
- lim n → ∞ 1 n ∑ i = 1 n f ( 1 n ) = ∫ 0 1 f ( x ) d x \lim\limits_{n\rightarrow\infty}\frac{1}{n}\sum_{i=1}^nf(\frac{1}{n})=\int ^1_0 f(x) {\rm d}x n→∞limn1i=1∑nf(n1)=∫01f(x)dx
- s i n x − t a n x = s i n ( 1 − 1 c o s x ) = s i n x c o s x ( c o s x − 1 ) sinx-tanx=sin(1-\frac{1}{cosx})=\frac{sinx}{cosx}(cosx-1) sinx−tanx=sin(1−cosx1)=cosxsinx(cosx−1)