范数和矩阵函数

第0章 复习与引申
第1章 线性空间与线性变换
第2章 内积空间和等距变换
第3章 矩阵的相似标准形
第4章 Hermite二次型
第5章 范数和矩阵函数
第6章 广义逆矩阵

第五章 范数和矩阵函数

1 向量范数

范数的定义:设 V V V是数域 C C C上线性空间, v v v是定义在 V V V上的实值函数。如果 v v v满足:

  1. 对任意 α ≠ θ ∈ V , v ( α ) > 0 \alpha\neq\theta\in V, v(\alpha)>0 α=θV,v(α)>0;恒正性
  2. 对任意 α ∈ V , k ∈ C , v ( k α ) = ∣ k ∣ v ( α ) \alpha\in V,k\in C,v(k\alpha)=|k|v(\alpha) αV,kC,v(kα)=kv(α);齐性
  3. 对任意 α , β ∈ V , v ( α + β ) ≤ v ( α ) + v ( β ) \alpha,\beta\in V,v(\alpha+\beta)\leq v(\alpha)+v(\beta) α,βV,v(α+β)v(α)+v(β);三角不等式

​ 则称 v v v V V V上的范数,定义了范数的线性空间称为赋范线性空间

C n C^n Cn上的范数:对于任意 X = ( x 1 , x 2 , ⋯   , x n ) ∈ C n X=(x_1,x_2,\cdots,x_n)\in C^n X=(x1,x2,,xn)Cn

  1. 向量1-范数: ∣ ∣ X ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ ||X||_1=\sum_{i=1}^n|x_i| X1=i=1nxi;
  2. 向量2-范数: ∣ ∣ X ∣ ∣ 2 = ∑ i = 1 n ∣ x i ∣ 2 ||X||_2=\sqrt{\sum_{i=1}^n|x_i|^2} X2=i=1nxi2 ;(内积空间上的长度)
  3. 向量 ∞ \infty -范数: ∣ ∣ X ∣ ∣ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ||X||_{\infty}=\max_{1\leq i\leq n}|x_i| X=max1inxi;
  4. 向量p-范数: p ≥ 1 , ∣ ∣ X ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p p\geq 1,||X||_p=(\sum_{i=1}^n|x_i|^p)^{1/p} p1,Xp=(i=1nxip)1/p
  5. 如果 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| 是已知范数,A是一可逆矩阵,则 ∣ ∣ X ∣ ∣ A = ∣ ∣ A X ∣ ∣ ||X||_A=||AX|| XA=AX也是 C n C^n Cn的一种范数。

线性空间 V V V上的范数:设 V V V是复数域 C C C上的 n n n维线性空间, α 1 , ⋯   , α n \alpha_1,\cdots,\alpha_n α1,,αn V V V的一组基, ∣ ∣ ⋅ ∣ ∣ ||\cdot|| C n C^n Cn上已知的范数,据此可以定义 V V V上的范数:若 η ∈ V \eta\in V ηV在基 α , ⋯   , α n \alpha,\cdots,\alpha_n α,,αn下的坐标是 X X X,规定 ∣ ∣ η ∣ ∣ = ∣ ∣ X ∣ ∣ ||\eta||=||X|| η=X

向量序列的收敛性:设 V V V是有限维赋范线性空间, ∣ ∣ ⋅ ∣ ∣ a ||\cdot||_a a ∣ ∣ ⋅ ∣ ∣ b ||\cdot||_b b都是 V V V上的范数, { η k } k = 1 ∞ \{\eta_k\}_{k=1}^\infty {ηk}k=1 V V V中的一个向量序列, η 0 ∈ V \eta_0\in V η0V。则 lim ⁡ k → θ ∣ ∣ η k − η 0 ∣ ∣ a = 0 \lim_{k\rightarrow\theta}||\eta_k-\eta_0||_a=0 limkθηkη0a=0当且仅当 lim ⁡ k → ∞ ∣ ∣ η k − η 0 ∣ ∣ b = 0 \lim_{k\rightarrow\infty}||\eta_k-\eta_0||_b=0 limkηkη0b=0。(向量序列的收敛性与范数无关)

2 矩阵范数

矩阵p范数:设矩阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n

  1. ∣ ∣ A ∣ ∣ m 1 = ∑ i , j ∣ a i j ∣ ||A||_{m1}=\sum_{i,j}|a_{ij}| Am1=i,jaij;
  2. ∣ ∣ A ∣ ∣ m 2 = ( ∑ i , j ∣ a i j ∣ 2 ) 1 / 2 = ( t r A H A ) 1 / 2 = ( t r A A H ) 1 / 2 ||A||_{m2}=(\sum_{i,j}|a_{ij}|^2)^{1/2}=(trA^HA)^{1/2}=(trAA^H)^{1/2} Am2=(i,jaij2)1/2=(trAHA)1/2=(trAAH)1/2
  3. ∣ ∣ A ∣ ∣ m ∞ = max ⁡ i , j { ∣ a i j ∣ } ||A||_{m_\infty}=\max_{i,j}\{|a_{ij}|\} Am=maxi,j{aij}
  4. ∣ ∣ A ∣ ∣ m 2 ||A||_{m2} Am2又记为 ∣ ∣ A ∣ ∣ F ||A||_F AF,称为Frobenius范数,简称 F F F范数。

F F F范数是酉不变的,若 U , V U,V U,V是酉矩阵,则 ∣ ∣ A ∣ ∣ F = ∣ U A V ∣ ∣ F ||A||_F=|UAV||_F AF=UAVF

算法范数的定义:设 ∣ ∣ ⋅ ∣ ∣ v n , ∣ ∣ ⋅ ∣ ∣ v m ||\cdot||_{v_n},||\cdot||_{v_m} vn,vm分别是 C n , C m C^n,C^m Cn,Cm上的范数,定义 C m × n C^{m\times n} Cm×n上的实值函数 ∣ ∣ ⋅ ∣ ∣ ||\cdot||
∣ ∣ A ∣ ∣ = max ⁡ θ ≠ X ∈ C n ∣ ∣ A X ∣ ∣ v m ∣ ∣ X ∣ ∣ v n ||A||=\max_{\theta\neq X\in C^n}\frac{||AX||_{v_m}}{||X||_{v_n}} A=θ=XCnmaxXvnAXvm
​ 称 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| 是由 ∣ ∣ ⋅ ∣ ∣ v n , ∣ ∣ ⋅ ∣ ∣ v m ||\cdot||_{v_n},||\cdot||_{v_m} vn,vm诱导的算子范数。算法范数满足三条公理,所以一定是范数。

算子范数:设 A = ( a i j ) s × n A=(a_{ij})_{s\times n} A=(aij)s×n

  1. 算子1-范数、列模和范数: ∣ ∣ A ∣ ∣ 1 = max ⁡ 1 ≤ j ≤ n { ∑ i = 1 s ∣ a i j ∣ } ||A||_1=\max_{1\leq j\leq n}\{\sum_{i=1}^s|a_{ij}|\} A1=max1jn{i=1saij};
  2. 算子2-范数、谱范数: ∣ ∣ A ∣ ∣ 2 = ρ ( A H A ) ||A||_2=\sqrt{\rho(A^HA)} A2=ρ(AHA)
  3. 算子3-范数、行模和范数: ∣ ∣ A ∣ ∣ ∞ = max ⁡ 1 ≤ i ≤ s { ∑ j = 1 n ∣ a i j ∣ } ||A||_{\infty}=\max_{1\leq i\leq s}\{\sum_{j=1}^n|a_{ij}|\} A=max1is{j=1naij};

如果 M M M是一个方阵,则 ρ ( M ) \rho(M) ρ(M)指的是 M M M的特征值的模的最大值,称为 M M M的谱半径。

范数的相容性:设 C s × m , C m × n , C s × n C^{s\times m},C^{m\times n},C^{s\times n} Cs×m,Cm×n,Cs×n中定义了范数 ∣ ∣ ⋅ ∣ ∣ a , ∣ ∣ ⋅ ∣ ∣ b , ∣ ∣ ⋅ ∣ ∣ c ||\cdot||_a,||\cdot||_b,||\cdot||_c a,b,c,若 ∀ A ∈ C s × m , B ∈ C m × n \forall A\in C^{s\times m},B\in C^{m\times n} ACs×mBCm×n ∣ ∣ A B ∣ ∣ c ≤ ∣ ∣ A ∣ ∣ a ∣ ∣ B ∣ ∣ b ||AB||_c\leq||A||_a||B||_b ABcAaBb,则称范数 ∣ ∣ ⋅ ∣ ∣ a , ∣ ∣ ⋅ ∣ ∣ b , ∣ ∣ ⋅ ∣ ∣ c ||\cdot||_a,||\cdot||_b,||\cdot||_c a,b,c是相容的。

∣ ∣ ⋅ ∣ ∣ m 1 , ∣ ∣ ⋅ ∣ ∣ m 2 , ∣ ∣ ⋅ ∣ ∣ 1 , ∣ ∣ ⋅ ∣ ∣ 2 , ∣ ∣ ⋅ ∣ ∣ ∞ ||\cdot||_{m1},||\cdot||_{m2},||\cdot||_{1},||\cdot||_{2},||\cdot||_{\infty} m1,m2,1,2,是相容的, ∣ ∣ ⋅ ∣ ∣ m ∞ ||\cdot||_{m_\infty} m是不相容的。

3 收敛定理

矩阵序列极限的定义:设矩阵序列 { A k } 1 ≤ k ≤ + ∞ , A k = ( a i j k ) n × n \{A_k\}_{1\leq k\leq +\infty},A_k=(a_{ij}^k)_{n\times n} {Ak}1k+,Ak=(aijk)n×n,如果 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n,且 ∀ i , j , lim ⁡ k → ∞ a i j k = a i j \forall i,j,\lim_{k\rightarrow\infty}a_{ij}^k=a_{ij} i,j,limkaijk=aij,则称 lim ⁡ k → ∞ A k = A \lim_{k\rightarrow\infty}A_k=A limkAk=A。如果 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| 是一矩阵范数,则
lim ⁡ k → ∞ A k = A    ⟺    lim ⁡ k → ∣ ∣ A k − A ∣ ∣ = 0 \lim_{k\rightarrow\infty}A_k=A\iff\lim_{k\rightarrow}||A_k-A||=0 klimAk=AklimAkA=0
幂序列:对给定的方阵 A A A,考虑方阵序列 { A k } \{A^k\} {Ak}。若有相容矩阵范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ,使得 ∣ ∣ A ∣ ∣ < 1 ||A||<1 A<1,则 lim ⁡ k → ∞ A k = O \lim_{k\rightarrow\infty} A^k=O limkAk=O lim ⁡ k → ∞ A k = O    ⟺    ρ ( A ) < 1 \lim_{k\rightarrow\infty} A^k=O\iff \rho(A)<1 limkAk=Oρ(A)<1

∣ ∣ ⋅ ∣ ∣ ||\cdot|| 是相容矩阵范数,则 ρ ( A ) ≤ ∣ ∣ A ∣ ∣ \rho(A)\leq ||A|| ρ(A)A。(下届)

对于任意矩阵 A ∈ C n × n A\in C^{n\times n} ACn×n,若 ε > 0 \varepsilon>0 ε>0,则一定存在 C n × n C^{n\times n} Cn×n上相容矩阵范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ,使得 ∣ ∣ A ∣ ∣ < ρ ( A ) + ε ||A||<\rho(A)+\varepsilon A<ρ(A)+ε

矩阵的幂级数:设 A A A是方阵,对于幂级数 ∑ i = 0 ∞ a i x i , f n ( x ) = ∑ i = 0 n a i x i \sum_{i=0}^\infty a_ix^i,f_n(x)=\sum_{i=0}^n a_ix^i i=0aixi,fn(x)=i=0naixi,若矩阵序列 f n ( A ) {f_n(A)} fn(A)收敛于矩阵 M M M,则称矩阵幂级数 ∑ i = 0 ∞ a i A i \sum_{i=0}^\infty a_iA^i i=0aiAi收敛于 M M M

若幂级数 ∑ i = 0 ∞ a i x i \sum_{i=0}^\infty a_ix^i i=0aixi的收敛半径为 r r r,则

  1. ρ ( A ) < r \rho(A)<r ρ(A)<r时,矩阵幂级数 ∑ i = 0 ∞ a i x i \sum_{i=0}^\infty a_ix^i i=0aixi收敛;
  2. ρ ( A ) > r \rho(A)>r ρ(A)>r时,矩阵幂级数 ∑ i = 0 ∞ a i x i \sum_{i=0}^\infty a_ix^i i=0aixi发散;

4 矩阵函数

矩阵函数的定义:设函数 f ( x ) f(x) f(x)可展开成幂级数 f ( x ) = ∑ i = o ∞ a i x i , ∣ x ∣ < R f(x)=\sum_{i=o}^\infty a_ix^i,|x|<R f(x)=i=oaixi,x<R,设 A ∈ C n × n A\in C^{n\times n} ACn×n ρ ( A ) < R \rho(A)<R ρ(A)<R,定义 f ( A ) = ∑ i = 0 ∞ a i A i = lim ⁡ n → ∞ ∑ i = 0 n a i A i f(A)=\sum_{i=0}^\infty a_i A^i=\lim_{n\rightarrow \infty}\sum_{i=0}^n a_iA^i f(A)=i=0aiAi=limni=0naiAi

几个重要的函数:

  1. e x = ∑ i = 0 ∞ x i i ! e^x=\sum_{i=0}^\infty\frac{x^i}{i!} ex=i=0i!xi
  2. sin ⁡ x = ∑ i = 0 ∞ ( − 1 ) i x 2 i + 1 ( 2 i + 1 ) ! \sin x=\sum_{i=0}^\infty(-1)^i\frac{x^{2i+1}}{(2i+1)!} sinx=i=0(1)i(2i+1)!x2i+1
  3. cos ⁡ x = ∑ i = 0 ∞ ( − 1 ) i x 2 i ( 2 i ) ! \cos x=\sum_{i=0}^\infty(-1)^i\frac{x^{2i}}{(2i)!} cosx=i=0(1)i(2i)!x2i

利用定义计算矩阵函数,就是对函数进行幂级数展开后带入矩阵。

Jordan形矩阵的函数:假设 f ( x ) = ∑ k = 0 ∞ a k x k = lim ⁡ n → ∞ f n ( x ) f(x)=\sum_{k=0}^\infty a_kx^k=\lim_{n\rightarrow\infty}f_n(x) f(x)=k=0akxk=limnfn(x),其中 f n ( x ) = ∑ i = 0 n a i x i f_n(x)=\sum_{i=0}^n a_ix^i fn(x)=i=0naixi

若存在可逆阵 P P P,使得矩阵 A = P J P − 1 A=PJP^{-1} A=PJP1,其中 J J J为若当型矩阵,则 f ( A ) = P f ( J ) P − 1 f(A)=Pf(J)P^{-1} f(A)=Pf(J)P1

若当型矩阵函数

若当块函数

已知 n × n n\times n n×n矩阵 A A A的特征值为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn,则 f ( A ) f(A) f(A)的特征值为 f ( λ 1 ) , f ( λ 2 ) , ⋯   , f ( λ n ) f(\lambda_1),f(\lambda_2),\cdots,f(\lambda_n) f(λ1),f(λ2),,f(λn)

利用Jordan型矩阵计算矩阵函数,即计算每个Jordan块的矩阵函数结果,并组合。

待定系数法:若 A A A的最小多项式为 m ( λ ) = ∏ i = 1 s ( λ − λ i ) t i m(\lambda)=\prod_{i=1}^s(\lambda-\lambda_i)^{t_i} m(λ)=i=1s(λλi)ti,则 f ( A ) = g ( A )    ⟺    f(A)=g(A)\iff f(A)=g(A)对每个特征值 λ i \lambda_i λi,有:
( λ i ) = g ( λ i ) f ′ ( λ i ) = g ′ ( λ i ) ⋯ f t i − 1 ( λ i ) = g t i − 1 ( λ i ) \begin{alignedat} f(\lambda_i)&=g(\lambda_i)\\ f'(\lambda_i)&=g'(\lambda_i)\\ \cdots\\ f^{t_i-1}(\lambda_i)&=g^{t_i-1}(\lambda_i)\\ \end{alignedat} (λi)f(λi)fti1(λi)=g(λi)=g(λi)=gti1(λi)

利用待定系数法求解矩阵函数时,先计算出矩阵的最小多项式,然后构造 g ( λ ) g(\lambda) g(λ)为最小多项式次数-1的多项式,求解多项式系数。

矩阵函数的性质:设 A , B ∈ C n × n , O A,B\in C^{n\times n},O A,BCn×n,O是n阶零矩阵,则

  1. e O = I e^O = I eO=I;
  2. A B = B A AB=BA AB=BA,则 e A e B = e B e A = e A + B e^Ae^B=e^Be^A=e^{A+B} eAeB=eBeA=eA+B
  3. ( e A ) − 1 = e − A (e^A)^{-1}=e^{-A} (eA)1=eA

参考文献:工程矩阵理论,张明淳著

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值