统计信号处理 (估计三): Cramer-Rao下限

Cramer-Rao下限(CRLB)是估计理论中的一个重要概念,它给出了无偏估计量方差的下限。CRLB表明,如果PDF对参数的依赖性较强,估计的精度会更高。通过对高斯白噪声中的信号模型分析,展示了CRLB如何衡量估计量的精度,并讨论了参数变换和矢量参数的情况。CRLB在信息量大时更低,意味着能提供更精确的参数估计。此外,Fisher信息作为数据的测量单位,体现了参数估计的精度和信息量之间的关系。
摘要由CSDN通过智能技术生成

Cramer-Rao下限

​ 未知参数的信息都是通过观测的数据以及那些数据的PDF得来的,所以如果PDF对参数依赖性较弱,或在极端情况下PDF与参数不相关,那么所估计的参数精度很差,如果PDF受未知参数影响大,所得到的估计越好。


例:依赖于未知参数的PDF。

​ 如果观测到单个样本,即 x [ 0 ] = A + w [ 0 ] x[0]=A+w[0] x[0]=A+w[0]​,其中 w [ 0 ] ∼ N ( 0 , σ 2 ) w[0]\sim N(0,\sigma^2) w[0]N(0,σ2)​。​

​ 实际上,一个好的无偏估计是 A ^ = x [ 0 ] \hat{A}=x[0] A^=x[0],其方差刚好是 σ 2 \sigma^2 σ2,所以估计量的精度随着方差的减少而改善。

在这里插入图片描述

​ 如上图所示,展示了两个具有不同方差的PDF与未知参数A的关系。可以看出(a)图的PDF更加集中,可以更为准确的估计未知参数A。

​ 当把PDF看作观测值x已知,且是未知参数的函数时,称其为似然函数。
p i ( x [ 0 ] ; A ) = 1 2 π σ i 2 e x p [ − 1 2 σ i 2 ( x [ 0 ] − A ) 2 ] p_i(x[0];A)=\frac{1}{\sqrt{2\pi\sigma_i^2}}exp[-\frac{1}{2\sigma_i^2}(x[0]-A)^2] pi(x[0];A)=2πσi2 1exp[2σi21(x[0]A)2]
​ 根据上图可知,似然函数的"尖锐"性决定了所估计的位置参数的精度,所以为了定量的衡量似然函数的"尖锐"性。因此可以用对数似然函数在其峰值处的负的二阶导数,求出对数似然函数的曲率来衡量"尖锐"性。计算步骤如下:
p ( x [ 0 ] ; A ) = 1 2 π σ 2 e x p [ − 1 2 σ 2 ( x [ 0 ] − A ) 2 ] ∂ l n p ( x [ 0 ] ; A ) ∂ A = 1 σ 2 ( x [ 0 ] − A ) − ∂ 2 l n p ( x [ 0 ] ; A ) ∂ A 2 = 1 σ 2 ∴ v a r ( A ^ ) = 1 − ∂ 2 l n p ( x [ 0 ] ; A ) ∂ A 2 p(x[0];A)=\frac{1}{\sqrt{2\pi\sigma^2}}exp[-\frac{1}{2\sigma^2}(x[0]-A)^2]\\ \frac{\partial lnp(x[0];A)}{\partial A}=\frac{1}{\sigma^2}(x[0]-A)\\ -\frac{\partial^2 lnp(x[0];A)}{\partial A^2}=\frac{1}{\sigma^2}\\ \therefore var(\hat A)=\frac{1}{-\frac{\partial^2 lnp(x[0];A)}{\partial A^2}} p(x[0];A)=2πσ2 1exp[2σ21(x[0]A)2]Alnp(x[0];A)=σ21(x[0]A)A22lnp(x[0];A)=σ21var(A^)=A22lnp(x[0];A)1
​ 所以估计量的方差随着曲率的增加而减少。而一般可以用对数似然函数的平均曲率来度量。
− E ( ∂ 2 l n p ( x [ 0 ] ; A ) ∂ A 2 ) -E(\frac{\partial^2 lnp(x[0];A)}{\partial A^2}) E(A22lnp(x[0];A))

求解Carmer-Rao下限

​ 如果PDF p ( x ; θ ) p(\pmb x;\theta) p(xxx;θ)​满足其一阶导数的均值为0,
E [ ∂ l n p ( x ; θ ) ∂ θ ] = 0 E[\frac{\partial lnp(x;\theta)}{\partial \theta}]=0 E[θlnp(x;θ)]=0
​ 那么任何无偏估计量 θ ^ \hat \theta θ^的方差必定满足
v a r ( θ ^ ) ≥ 1 − E ( ∂ 2 l n p ( x ; θ ) ∂ θ 2 ) var(\hat \theta)\geq \frac{1}{-E(\frac{\partial^2 lnp(x;\theta)}{\partial\theta^2})} var(θ^)E(θ22lnp(x;θ))1
​ 其中导数是在 θ \theta θ的真值处计算的,数学期望是对 p ( x ; θ ) p(\pmb x;\theta) p(xxx;θ)求取的,而且对于某个函数 g g g I I I,当且仅当
∂ l n p ( x ; θ ) ∂ θ = I ( θ ) ( g ( x ) − θ ) \frac{\partial lnp(x;\theta)}{\partial \theta}=I(\theta)(g(x)-\theta) θlnp(x;θ)=I(θ)(g(x)θ)
时,对所有 θ \theta θ​达到下限的无偏估计量就可以求得。这个估计量为 θ ^ = g ( x ) \hat\theta=g(x) θ^=g(x)​,它是MVU估计量,最小方差是 1 I ( θ ) \frac{1}{I(\theta)} I(θ)1​。又因为
E [ ( ∂ l n p ( x ; θ ) ∂ θ ) 2 ] = − E [ ( ∂ 2 l n p ( x ; θ ) ∂ θ 2 ) ] E[(\frac{\partial lnp(x;\theta)}{\partial\theta})^2]=-E[(\frac{\partial^2 lnp(x;\theta)}{\partial\theta^2})] E[(θlnp(x;θ))2]=E[(θ22lnp(x;θ))]
所以方差也可表示为
v a r ( θ ^ ) ≥ 1 E [ ( ∂ l n p ( x ; θ ) ∂ θ ) 2 ] var(\hat\theta)\geq \frac{1}{E[(\frac{\partial lnp(x;\theta)}{\partial\theta})^2]} var(θ^)E[(θlnp(x;θ))2]1
而公式5中的分母也被称为数据x的Fisher信息 I ( θ ) I(\theta) I(θ),即
I ( θ ) = − E [ ( ∂ 2 l n p ( x ; θ ) ∂ θ 2 ) ] v a r ( θ ^ ) ≥ 1 I ( θ ) I(\theta)=-E[(\frac{\partial^2 lnp(x;\theta)}{\partial\theta^2})]\\ var(\hat\theta)\geq\frac{1}{I(\theta)} I(θ)=E[(θ22lnp(x;θ))]var(θ^)I(θ)1

所以信息越多,CRLB越低,所以Fisher信息具有信息测度的基本性质:

  1. 由公式8可知,它是非负的。
  2. 对独立观测的可加性。

其中性质2可以得到一个结论对N个IID观察的CRLB是单次观察的 1 N \frac{1}{N} N1​​​倍。而对于非独立的N次观察,得到的信息小于单次观察的N倍。


例:在高斯白噪声干扰中,信号为高斯白噪声的CRLB计算,可得观测值PDF
x [ n ] = s [ n ; θ ] + w [ n ] p ( x ; θ ) = 1 ( 2 π σ 2 ) N 2 e x p { − 1 2 σ 2 ∑ n = 0 N − 1 ( x [ n ] − s [ n ; θ ] ) 2 } x[n]=s[n;\theta]+w[n]\\ p(x;\theta)=\frac{1}{(2\pi\sigma^2)^\frac{N}{2}}exp\{{-\frac{1}{2\sigma^2}\sum_{n=0}^{N-1}(x[n]-s[n;\theta])^2}\} x[n]=s[n;θ]+w[n]p(x;θ)=(2πσ2)2N1exp{2σ21n=0N1(x[n]s[n;θ])2}
此时对其求一次导和二次导:
∂ l n p ( x ; θ ) ∂ θ = 1 σ 2 ∑ n = 0 N − 1 ( x [ n ] − s [ n ; θ ] ) ∂ s [ n ; θ ] ∂ θ ∂ 2 l n p ( x ; θ ) ∂ θ 2 = 1 σ 2 ∑ n = 0 N − 1 { ( x [ n ] − s [ n ; θ ] ) ∂ 2 s [ n ; θ ] ∂ 2 θ − ( ∂ s [ n ; θ ] ∂ θ ) 2 } \frac{\partial lnp(x;\theta)}{\partial \theta}=\frac{1}{\sigma^2}\sum_{n=0}^{N-1}(x[n]-s[n;\theta])\frac{\partial s[n;\theta]}{\partial \theta}\\ \frac{\partial^2 lnp(x;\theta)}{\partial \theta^2}=\frac{1}{\sigma^2}\sum_{n=0}^{N-1}\{(x[n]-s[n;\theta])\frac{\partial^2 s[n;\theta]}{\partial^2 \theta}-(\frac{\partial s[n;\theta]}{\partial \theta})^2\} θlnp(x;θ)=σ21n=0N1(x[n]s[n;θ])θs[n;θ]θ22lnp(x;θ)=σ21n=0N1{(x[n]s[n;θ])2θ2s[n;θ](θs[n;θ])2}

取数学期望后,计算CRLB:
E ( ∂ 2 l n p ( x ; θ ) ∂ θ 2 ) = − 1 σ 2 ∑ n = 0 N − 1 ( ∂ s [ x ; θ ] ∂ θ ) 2 v a r ( θ ^ ) ≥ σ 2 ∑ n = 0 N − 1 ( ∂ s [ x ; θ ] ∂ θ ) 2 E(\frac{\partial^2lnp(x;\theta)}{\partial\theta^2})=-\frac{1}{\sigma^2}\sum_{n=0}^{N-1}(\frac{\partial s[x;\theta]}{\partial \theta})^2\\ var(\hat\theta)\geq\frac{\sigma^2}{\sum_{n=0}^{N-1}(\frac{\partial s[x;\theta]}{\partial \theta})^2} E(θ22lnp(x;θ))=σ21n=0N1(θs[x;θ])2var(θ^)n=0N1(θs[x;θ])2σ2
CRLB中展示了信号 s [ x ; θ ] s[x;\theta] s[x;θ]依赖 θ \theta θ的重要性。如果信号随着未知参数的改变而迅速变化的话,那么其CRLB更小,能够产生更精确的估计量。


参数的变换

如果所要估计的量是某个基本参数的函数情况。例如对基本参数 θ \theta θ,想要得到估计量 θ 2 \theta^2 θ2​的CRLB,如果估计量 α = g ( θ ) \alpha=g(\theta) α=g(θ),那么CRLB为
v a r ( α ^ ) ≥ ( ∂ g ∂ θ ) 2 − E [ ∂ 2 l n p ( x ; θ ) ∂ θ 2 ] var(\hat\alpha)\geq\frac{(\frac{\partial g}{\partial \theta})^2}{-E[\frac{\partial^2lnp(x;\theta)}{\partial\theta^2}]} var(α^)E[θ22lnp(x;θ)](θg)2
如果取 α = g ( θ ) = θ 2 \alpha=g(\theta)=\theta^2 α=g(θ)=θ2
v a r ( A 2 ^ ) ≥ ( 2 A ) 2 N / σ 2 = 4 A 2 σ 2 N var(\hat{A^2})\geq\frac{(2A)^2}{N/\sigma^2}=\frac{4A^2\sigma^2}{N} var(A2^)N/σ2(2A)2=N4A2σ2

扩展到矢量参数

如果将上述结果扩展到估计矢量参数 θ = [ θ 1 , θ 2 , ⋯   , θ p ] T \pmb \theta=[\theta_1,\theta_2,\cdots,\theta_p]^T θθθ=[θ1,θ2,,θp]T,假设估计矢量 θ ^ \hat{\pmb \theta} θθθ^是无偏估计,那么矢量参数的CRLB可以对每个元素的方差放置一个下限,其中CRLB可以通过一个矩阵的逆的 [ i , i ] [i,i] [i,i]元素求出,即
v a r ( θ i ^ ) ≥ [ I − 1 ( θ ) ] i i var(\hat{\pmb\theta_i})\geq[\pmb I^{-1}(\pmb \theta)]_{ii} var(θθθi^)[III1(θθθ)]ii
其中 I ( θ ) \pmb I(\pmb \theta) III(θθθ) p × p p\times p p×p的Fisher矩阵,其定义如下
[ I ( θ ) ] i j = − E [ ∂ 2 l n p ( x ; θ ) ∂ θ i ∂ θ j ] i = 1 , 2 , . . . , p ; j = 1 , 2 , . . . , p [\pmb I(\pmb \theta)]_{ij}=-E[\frac{\partial^2lnp(x;\theta)}{\partial\theta_i\partial\theta_j}]\quad i=1,2,...,p;j=1,2,...,p [III(θθθ)]ij=E[θiθj2lnp(x;θ)]i=1,2,...,p;j=1,2,...,p

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值