numpy中矩阵相乘和矩阵点乘

矩阵相乘

条件:左矩阵的列数等于右矩阵的行数

操作:同线性代数中矩阵乘法

当使用np.array()定义矩阵时,a,b矩阵相乘:np.dot(a,b)

当使用np.mat()定义矩阵时,a,b矩阵相乘:np.dot(a,b)或a*b

矩阵点乘

条件:同型矩阵(两矩阵行数和列数相同)

操作:同位置元素相乘

当使用np.array()定义矩阵时,a,b矩阵点乘:a*b或np.multiply(a,b)

当使用np.mat()定义矩阵时,a,b矩阵点乘:np.multiply(a,b)

注意:python的numpy有广播机制,所以在使用numpy库的过程中,矩阵点乘的条件(同型矩阵)可以不满足。需满足下图General Principle(通用规则)可以使用广播机制:

下图为矩阵点乘时广播机制的使用

### 使用 NumPy 的 `dot` 函数实现矩阵向量的 在数据科学领域,矩阵运算非常常见。当涉及到矩阵向量之间的操作时,可以利用 NumPy 提供的强大功能来完成这一任务。具体来说,可以通过调用 `np.dot()` 或者 `.dot()` 方法来进行计算。 以下是关于如何使用 NumPy 进行矩阵向量的具体说明: #### 基本概念 矩阵向量的实际上是通过一系列矢量间的积(dot product)来定义的。对于一个 \( m \times n \) 大小的矩阵 \( A \),以及长度为 \( n \) 的列向量 \( v \),它们的结果是一个大小为 \( m \) 的列向量[^4]。 #### 实现方法 NumPy 中提供了多种方式执行矩阵向量的操作,其中最常用的是 `np.dot(A, v)` `A.dot(v)`。这两种形式的功能完全一致,可以根据个人习惯选择其中之一。 下面展示了一个具体的例子,演示如何使用 `dot` 函数进行矩阵向量的操作: ```python import numpy as np # 定义一个 3x2 矩阵 A A = np.array([[1, 2], [3, 4], [5, 6]]) # 定义一个长度为 2 的列向量 v v = np.array([7, 8]) # 计算矩阵 A 向量 v 的结果 result_dot = np.dot(A, v) print(result_dot) ``` 运行上述代码后,得到的结果将是 `[23, 53, 83]`,这正是矩阵每行分别向量相乘并求后的结果。 需要注意的一是,在某些情况下如果希望更直观地表达矩阵法而非逐元素相乘,则可以选择使用 `numpy.matrix` 类型替代默认数组类型。此时简单地运用星号 (`*`) 即可表示矩阵法[^2]。 然而值得注意的是,尽管 `numpy.matrix` 可以为特定场景提供便利,但由于其兼容性灵活性较差的原因,官方文档建议优先采用常规 ndarray 结合相应函数的方式处理大多数线性代数需求[^1]。 #### 总结 综上所述,借助于 NumPy 库中的 `dot` 函数能够高效便捷地达成矩阵同向量之间的目的,并且推荐按照标准做法即基于 ndarray 来构建输入数据结构以便获得更好的通用支持效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值