SLAM十四讲学习笔记2—— 特征点法

本文介绍了SLAM中的特征点法,包括FAST关键点提取和ORB描述子匹配。通过特征点的性质、信息和匹配方法,阐述了如何在图像中找到并匹配特征点,用于计算图像间的相对位置和深度估计。尽管这种方法存在尺度不变性问题,但通过图像金字塔可以部分解决。
摘要由CSDN通过智能技术生成

SLAM十四讲学习笔记2—— 前端特征点法之特征描述与特征匹配

思路

由于每个图片里的像素点非常多,无法将所有点都进行对比。因此将每个图片中有特征的点提取出来进行对比。

步骤

  1. 将图中特征点(关键点)提取出来:FAST ;
  2. 匹配描述点附近图像块的编码关系:ORB;
  3. 有了两图的二进制编码即可计算得两图位置(R、t)的关系:ICP;
  4. 知道两图关系即可估计特征点代表的实际物体距相机的深度:三角化估计深度;

简化后思路

假设图片纹理丰富,可以简单的找到角点作为特征点进行匹配。进行匹配后可以找到两张图片的对应关系。(本课题不使用?)

特征点性质

代表性、可重复性(在A中有这个点同时在B中也可以看到这个点)、可区别性(这个点在A、B中存在的位置等信息有区别,可以用来进行比较)、高效(计算量小,对比速度要小于图片更新速度)、本地的部分。在本课题中由于使用SLAM需要进行实时定位,因此特征点提取必须非常之快,可以牺牲少量的准确性。

特征点的信息

位置(在哪?)、大小(取多大?)、方向(角点方向向外还是里?)、评分、自身信息(u、v、、s等)等——关键点(FAST/GFTT)

特征点的信息

  1. 理想方
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值