思路
由于每个图片里的像素点非常多,无法将所有点都进行对比。因此将每个图片中有特征的点提取出来进行对比。
步骤
- 将图中特征点(关键点)提取出来:FAST ;
- 匹配描述点附近图像块的编码关系:ORB;
- 有了两图的二进制编码即可计算得两图位置(R、t)的关系:ICP;
- 知道两图关系即可估计特征点代表的实际物体距相机的深度:三角化估计深度;
简化后思路
假设图片纹理丰富,可以简单的找到角点作为特征点进行匹配。进行匹配后可以找到两张图片的对应关系。(本课题不使用?)
特征点性质
代表性、可重复性(在A中有这个点同时在B中也可以看到这个点)、可区别性(这个点在A、B中存在的位置等信息有区别,可以用来进行比较)、高效(计算量小,对比速度要小于图片更新速度)、本地的部分。在本课题中由于使用SLAM需要进行实时定位,因此特征点提取必须非常之快,可以牺牲少量的准确性。
特征点的信息
位置(在哪?)、大小(取多大?)、方向(角点方向向外还是里?)、评分、自身信息(u、v、、s等)等——关键点(FAST/GFTT)
特征点的信息
- 理想方