主要内容
- 马尔科夫矩阵
- 马尔科夫矩阵的应用
- 傅里叶级数
正文
本节主要介绍了马尔科夫矩阵与傅里叶级数,是对特征值和之前大量知识的一次总结,重在理解应用,内容介绍的并不详细。
马尔科夫矩阵
先看一个马尔科夫矩阵的示例: A = [ 0.1 0.01 0.3 0.2 0.99 0.3 0.7 0 0.4 ] A=\begin{bmatrix}0.1&0.01&0.3\\0.2&0.99&0.3\\0.7&0&0.4\end{bmatrix} A=⎣⎡0.10.20.70.010.9900.30.30.4⎦⎤马尔科夫矩阵需要满足两条性质:
- 每个元素均为非负数,可以为零
- 每列的元素和为 1 1 1
根据经验,我们还有这样的性质:如果 A A A是马尔科夫矩阵,则 A A A的幂也是马尔科夫矩阵。
接下来讨论矩阵次幂运算的“稳态”的概念,在微分方程中,我们使用特征值和 0 0 0的关系来判断,但是这里的运算变为了幂次运算,这时候稳态的判断就要发生变化了。研究马尔科夫矩阵的特征值,我们可以发现它的特征值具有这样的性质:
- λ = 1 \lambda=1 λ=1是一个特征值
- 其余特征值, ∣ λ i ∣ < 1 |\lambda_i|<1 ∣λi∣<1
这两个性质都是经过严格证明,并且成立的。这里省略证明细节,不过可以知道的是每列元素的和为
1
1
1这个性质决定了其有特征值
1
1
1这个性质。
我们继续判断幂次元素的收敛性。在差分方程中,我们接触的是这样的算式:
u
k
=
A
k
u
0
u_k=A^ku_0
uk=Aku0:
u
k
=
A
k
u
0
=
c
1
λ
1
k
x
1
+
c
2
λ
2
k
x
2
+
.
.
.
+
c
n
λ
n
k
x
n
u_k=A^ku_0=c_1\lambda_1^kx_1+c_2\lambda_2^kx_2+...+c_n\lambda_n^kx_n
uk=Aku0=c1λ1kx1+c2λ2kx2+...+cnλnkxn根据马尔科夫矩阵的特点,
λ
1
=
1
\lambda_1=1
λ1=1,其余
∣
λ
i
∣
<
1
|\lambda_i|<1
∣λi∣<1,所以最后幂次运算都会收敛于
u
0
u_0
u0中的
c
1
x
1
c_1x_1
c1x1部分,这就是稳态的性质。在马尔科夫矩阵中,若它的特征值
1
1
1所对应的特征向量的元素权威正,则初始值
u
0
u_0
u0是正的,那么稳态也是正值。
这是一个补充部分。之前介绍过行列式性质十,转置矩阵和原矩阵的行列式值相同,这里还可以应用到 ∣ A − λ i ∣ |A-\lambda i| ∣A−λi∣这个方程上,得到: ∣ A − λ i ∣ = ∣ A − λ i ∣ T = ∣ A T − λ i ∣ |A-\lambda i|=|A-\lambda i|^T=|A^T-\lambda i| ∣A−λi∣=∣A−λi∣T=∣AT−λi∣当 ∣ A − λ i ∣ = 0 |A-\lambda i|=0 ∣A−λi∣=0时, ∣ A T − λ i ∣ |A^T-\lambda i| ∣AT−λi∣也为零,他们的特征值是一样的。所以这里得出的结论是:转置矩阵的特征值和原矩阵的特征值是相同的,但是特征向量是不同的。
马尔科夫矩阵的应用
研究方程: u k + 1 = A u k u_{k+1}=Au_k uk+1=Auk,其中 A A A是马尔科夫矩阵。给定 A 2 × 2 A_{2\times 2} A2×2,研究加州和麻省的人口问题,矩阵 A A A表示,一年后人口的转移。矩阵的四个元素相应表示的是留下和迁出的概率,在这个过程中的人口总数保持不变。不过,这里限制马尔科夫矩阵是不变的,也就是每次变动的概率是一样的。公式: [ U J U M ] t = k + 1 = [ 0.9 0.2 0.1 0.8 ] [ U J U M ] t = k \begin{bmatrix}U_{J}\\U_{M}\end{bmatrix}_{t=k+1}=\begin{bmatrix}0.9&0.2\\0.1&0.8\end{bmatrix}\begin{bmatrix}U_{J}\\U_{M}\end{bmatrix}_{t=k} [UJUM]t=k+1=[0.90.10.20.8][UJUM]t=k中间的矩阵表示由 0.9 0.9 0.9的比例的人口留在加州, 0.1 0.1 0.1的从加州迁移到麻省, 0.8 0.8 0.8的人留在麻省, 0.2 0.2 0.2的人迁移到加州,这是一个马尔科夫矩阵。假设初始状态为: [ U J U M ] t = 0 = [ 0 1000 ] \begin{bmatrix}U_{J}\\U_M\end{bmatrix}_{t=0}=\begin{bmatrix}0\\1000\end{bmatrix} [UJUM]t=0=[01000]首先我们计算马尔科夫矩阵的特征值和特征向量。得到 λ 1 = 1 , λ 2 = 0.7 \lambda_1=1,\lambda_2=0.7 λ1=1,λ2=0.7, x 1 = [ 2 1 ] , x 2 = [ − 1 1 ] x_1=\begin{bmatrix}2\\1\end{bmatrix},x_2=\begin{bmatrix}-1\\1\end{bmatrix} x1=[21],x2=[−11]将这些结果带入到通解公式得: u k = c 1 1 k [ 2 1 ] + c 2 ( 0.7 ) k [ − 1 1 ] u_k=c_11^k\begin{bmatrix}2\\1\end{bmatrix}+c_2(0.7)^k\begin{bmatrix}-1\\1\end{bmatrix} uk=c11k[21]+c2(0.7)k[−11]然后带入初值 u 0 u_0 u0,求解 c 1 = 1000 3 , c 2 = 2000 3 c_1=\frac{1000}{3},c_2=\frac{2000}{3} c1=31000,c2=32000。最终解为: u k = 1000 3 1 k [ 2 1 ] + 2000 3 ( 0.7 ) k [ − 1 1 ] u_k=\frac{1000}{3}1^k\begin{bmatrix}2\\1\end{bmatrix}+\frac{2000}{3}(0.7)^k\begin{bmatrix}-1\\1\end{bmatrix} uk=310001k[21]+32000(0.7)k[−11]随着 k k k的增加,最终弧稳定在 1000 3 [ 2 1 ] \frac{1000}{3}\begin{bmatrix}2\\1\end{bmatrix} 31000[21]
傅里叶级数
预备知识: 假设有一组标准正交向量 q 1 , q 2 , . . . q n q_1,q_2,...q_n q1,q2,...qn,它们是 n n n维空间的一组完整基。那么此空间中的任意向量 v v v可由这组基的线性组合表示,也就是可以有基线性组合得到: v = x 1 q 1 + x 2 q 2 + . . . + x n q n = Q x \qquad v=x_1q_1+x_2q_2+...+x_nq_n=Qx v=x1q1+x2q2+...+xnqn=Qx ⇒ x = Q − 1 v , h a s Q T = Q − 1 \Rightarrow x=Q^{-1}v,\qquad has\ Q^T=Q^{-1} ⇒x=Q−1v,has QT=Q−1 ⇒ x = Q T v \Rightarrow x=Q^Tv ⇒x=QTv将上面的这个方程应用到各个分量: x i = q i T v x_i=q_i^Tv xi=qiTv
傅里叶级数: s e t f ( x ) = a 0 + a 1 c o s x + b 1 s i n x + a 2 c o s 2 x + b 2 s i n 2 x + . . . set\quad f(x)=a_0+a_1cosx+b_1sinx+a_2cos2x+b_2sin2x+... setf(x)=a0+a1cosx+b1sinx+a2cos2x+b2sin2x+...与之前的向量不同的是我们这里使用的是函数。这种形式的公式就是傅里叶级数,作用在函数空间上,用函数 f ( x ) f(x) f(x)来代替 v v v,也就使用正交函数来代替了前面介绍的标准正交基。在这个函数中,基就是 1 , c o s x , s i n x , c o s 2 x , s i n 2 x , . . . . 1,cosx,sinx,cos2x,sin2x,.... 1,cosx,sinx,cos2x,sin2x,....。傅里叶级数成立的原因:这些基是正交的。
函数空间下的正交: 向量的点积: v T w = v 1 w 1 + . . + v n w n v^Tw=v_1w_1+..+v_nw_n vTw=v1w1+..+vnwn向量可以理解为一个点,点与点之间是离散的,但是这里的 c o s x , s i n x cosx,sinx cosx,sinx都是连续的函数。类似的,在向量中,我们求点积是对每个 v i , w i v_i,w_i vi,wi对应乘积求和。在连续的函数上也是一样,我们对每个点对应的函数值的乘积求和,这时候和的形式表现为积分。由于 c o s x , s i n x cosx,sinx cosx,sinx都是周期性函数,所以我们可以选择仅仅在一个周期 [ 0 , 2 π ] [0,2\pi] [0,2π]上积分。可以验证,傅里叶级数中的基是正交的。
系数的求解问题: f ( x ) = a 0 + a 1 c o s x + b 1 s i n x + a 2 c o s 2 x + b 2 s i n 2 x + . . . f(x)=a_0+a_1cosx+b_1sinx+a_2cos2x+b_2sin2x+... f(x)=a0+a1cosx+b1sinx+a2cos2x+b2sin2x+...以求解其中的 a 1 a_1 a1为例,只需要将函数乘 a 1 a_1 a1所对应的基即可。 ∫ 0 2 π f ( x ) c o s x d x = ∫ 0 2 π a 1 c o s x 2 d x = a 1 π \int^{2\pi}_0f(x)cosxdx=\int^{2\pi}_0a_1cosx^2dx=a_1\pi ∫02πf(x)cosxdx=∫02πa1cosx2dx=a1π a 1 = ∫ 0 2 π f ( x ) c o s x d x π a_1=\frac{\int^{2\pi}_0f(x)cosxdx}{\pi} a1=π∫02πf(x)cosxdx求解其他的系数也是这个方法。理解傅里叶级数的关键在于将标准正交基与向量空间的概念扩展到正交函数和函数空间上。