24马尔可夫矩阵、傅立叶级数

一、马尔可夫矩阵(Markov Matrix)

A = [ 0.1 0.01 0.3 0.2 0.99 0.3 0.7 0 0.4 ] A=\begin{bmatrix}0.1&0.01&0.3\\0.2&0.99&0.3\\0.7&0&0.4\end{bmatrix} A= 0.10.20.70.010.9900.30.30.4
上述矩阵就是一个马尔可夫矩阵,他的特点是:

  • 所有列之和为1;
  • 所有元素都大于0;

我们比较关心这个矩阵的稳态。由前面的知识可知,矩阵的稳态与其特征值的情况有关。马尔可夫矩阵的特征值和特征向量的情况是:

  • λ = 1 \lambda=1 λ=1是马尔可夫矩阵的一个特征向量;
  • 除1特征值,满足 ∣ λ i ∣ < 1 \vert \lambda_i\vert<1 λi<1

如果这样的矩阵满足,递推关系
u k = A k u 0 u_k=A^ku_0 uk=Aku0
如果写成与特征值和特征向量的关系有:
u k = c 1 λ 1 k x 1 + c 2 λ 2 k x 2 + ⋯ + c n λ n k x n u_k=c_1\lambda_1^kx_1+c_2\lambda_2^kx_2+\cdots+c_n\lambda_n^kx_n uk=c1λ1kx1+c2λ2kx2++cnλnkxn
假设 λ 1 \lambda_1 λ1是那个满足值为1的特征值,那么整个 u k u_k uk的表达式在次数足够大的时候将会变成只剩下一项
u k = c 1 x 1 u_k=c_1x_1 uk=c1x1
这就是我们的稳态值。 事实上,马尔可夫矩阵还满足特征向量 x 1 x_1 x1所有分量都不小于0,即:
u k ≥ 0 u_k\geq0 uk0
为什么特征值中有一个是1?我们假设特征值是马尔可夫矩阵的确实是1,那么有:
B = A − 1 I = [ − 0.9 0.01 0.3 0.2 − 0.01 0.3 0.7 0 0.6 ] B=A-1I=\begin{bmatrix}-0.9&0.01&0.3\\0.2&-0.01&0.3\\0.7&0&0.6\end{bmatrix} B=A1I= 0.90.20.70.010.0100.30.30.6
简单观察有,每一列元素之和等于0,意味着 A − 1 I A-1I A1I是奇异的,也就是行列式 ∣ A − 1 I ∣ = 0 \vert A-1I\vert=0 A1I=0,确实满足特征值的定义。

顺便复习一下四个基本子空间:首先看行空间,因为列和为0,且系数组合为 [ 1 1 1 ] \begin{bmatrix}1&1&1\end{bmatrix} [111],也就是 [ 1 1 1 ] \begin{bmatrix}1&1&1\end{bmatrix} [111]在矩阵 B B B的左零空间中;如果存在组合使得结果向量为 [ 0 0 0 ] \begin{bmatrix}0\\0\\0\end{bmatrix} 000 ,那么这个系数组合是什么?根据特征值和特征向量的定义,这个系数矩阵就是特征向量。一个小插曲,矩阵 A A A和其转置矩阵 A T A^T AT具有相同的特征值。

实例:我们研究的是两个州的人口情况,两个州的人口随着时间可能发生迁移,矩阵 A A A表示一年之后人口的迁移矩阵,有些人从加州迁移到了麻省,有些从麻省迁移到了加州。这个模型是满足马尔可夫矩阵的,因为:

  • 迁移是一个概率问题,因此都大于或等于零;
  • 列和是所有情况概率和,等于1;

[ u c a l u m a s s ] k + 1 = [ 0.9 0.2 0.1 0.8 ] [ u c a l u m a s s ] k \begin{bmatrix}u_{cal}\\u_{mass}\end{bmatrix}_{k+1}=\begin{bmatrix}0.9&0.2\\0.1&0.8\end{bmatrix}\begin{bmatrix}u_{cal}\\u_{mass}\end{bmatrix}_k [ucalumass]k+1=[0.90.10.20.8][ucalumass]k
同时,初始人口情况为:
u 0 = [ u c a l u m a s s ] 0 = [ 0 1000 ] u_0=\begin{bmatrix}u_{cal}\\u_{mass}\end{bmatrix}_0=\begin{bmatrix}0\\1000\end{bmatrix} u0=[ucalumass]0=[01000]
一百年后他们的人口分布情况会是怎样的?你当然可以通过直接矩阵的幂次来计算人数分布,但是这一次我们将会用到这节课学到的特征值和特征向量。

[ 0.9 0.2 0.1 0.8 ] \begin{bmatrix}0.9&0.2\\0.1&0.8\end{bmatrix} [0.90.10.20.8]
上述矩阵的一个特征值和特征向量为:
λ 1 = 1 x 1 = [ 2 1 ] \lambda_1=1 \quad x_1=\begin{bmatrix}2\\1\end{bmatrix} λ1=1x1=[21]
另一个特征值和特征向量为:
λ 2 = 0.7 x 2 = [ − 1 1 ] \lambda_2=0.7\quad x_2=\begin{bmatrix}-1\\1\end{bmatrix} λ2=0.7x2=[11]
所以:
u k = c 1 1 k [ 2 1 ] + c 2 ( 0.7 ) k [ − 1 1 ] u_k=c_11^k\begin{bmatrix}2\\1\end{bmatrix}+c_2(0.7)^k\begin{bmatrix}-1\\1\end{bmatrix} uk=c11k[21]+c2(0.7)k[11]
结合初始情况,可以求得 c 1 = 1000 3 c_1=\frac{1000}{3} c1=31000 c 2 = 2000 3 c_2=\frac{2000}{3} c2=32000,随着年数的增加0.7项将会逐渐变小,直至可以忽略,所有最后稳态将有特征值为1的项决定。

二、傅立叶级数

对于 n n n个相互正交的基,对于任意 n n n维向量 v v v都可以表示为:
v = x 1 q 1 + x 2 q 2 + ⋯ + x n q n v=x_1q_1+x_2q_2+\cdots+x_nq_n v=x1q1+x2q2++xnqn
那么对于系数 x 1 x_1 x1,可以通过乘以 q 1 T q_1^T q1T求得:
q 1 T v = x 1 q 1 + 0 + 0 + ⋯ = x 1 q 1 q_1^Tv=x_1q_1+0+0+\cdots=x_1q_1 q1Tv=x1q1+0+0+=x1q1
矩阵形式就更加直观了:
v = [ q 1 q 2 ⋯ q n ] [ x 1 x 2 ⋮ x n ] = Q x v=\begin{bmatrix}q_1&q_2&\cdots&q_n\end{bmatrix}\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}=Qx v=[q1q2qn] x1x2xn =Qx
即:
x = Q − 1 v = Q T v x=Q^{-1}v=Q^Tv x=Q1v=QTv
注:别忘了正交矩阵的性质 Q T = Q − 1 Q^T=Q^{-1} QT=Q1

下面将会引出傅立叶级数的概念。对于一个函数 f ( x ) f(x) f(x),满足:
f ( x ) = a 0 + a 1 cos ⁡ x + b 1 sin ⁡ x + a 2 cos ⁡ 2 x + b 2 sin ⁡ 2 x + ⋯ f(x)=a_0+a_1\cos x+b_1\sin x+a_2\cos 2x+b_2\sin 2x+\cdots f(x)=a0+a1cosx+b1sinx+a2cos2x+b2sin2x+
这就是傅立叶级数(Fourier series)的定义,在这里基为:1 cos ⁡ x \cos x cosx sin ⁡ x \sin x sinx cos ⁡ 2 x \cos 2x cos2x sin ⁡ 2 x \sin2x sin2x ⋯ \cdots ,再讲这个级数之前我们需要更新以下认知:

  • 基可以不是有限的,可以是无穷的;
  • 不光向量具有正交概念,函数也有;

重点是如何定义函数正交这个概念:

对于两个列向量 v v v w w w,其点积、内积计算可以通过转置其中一个列向量放在前面:
v T w = v 1 w 1 + v 2 w 2 + ⋯ + v n w n v^Tw=v_1w_1+v_2w_2+\cdots+v_nw_n vTw=v1w1+v2w2++vnwn

那么对于两个函数 f f f g g g其定义又是如何?

f T g = ∫ 0 2 π f ( x ) g ( x ) d x f^Tg=\int_0^{2\pi} f(x)g(x)dx fTg=02πf(x)g(x)dx
简单验证一下, sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx是否为正交函数?
∫ 0 2 π s i n x c o s x = 1 2 sin ⁡ 2 x ∣ 0 2 π = 0 \int_0^{2\pi}sinx cosx=\frac{1}{2}\sin^2 x|^{2\pi}_0=0 02πsinxcosx=21sin2x02π=0
没错,他确实等于零。和向量一样,求其中一个基的系数只需要乘以对应的基即可,以 a 1 a_1 a1为例:函数两边同时乘以 cos ⁡ x \cos x cosx,可以求得:
a 1 = ∫ 0 2 π f ( x ) d x π a_1=\frac{\int_0^{2\pi}f(x)dx}{\pi} a1=π02πf(x)dx

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值