题目:
我们把只含因子2、3、5的数称作丑数。求按从小到大的顺序的第1500个丑数。例如6、8都是丑数,但14不是,因为它包含因子7。习惯上,我们把1当作第一个丑数。
根据丑数的定义,丑数只能被2、3、5整数。
判断一个数是否为丑数:
如果能被2整除,那么把它连续除以2;如果能被3整除,那么把它连续除以3;如果能被5整除,那么把它连续除以5。
最后结果为1,即为丑数。否则不是。
bool IsUgly(int number)
{
while(number%2==0)
number/=2;
while(number%3==0)
number/=3;
while(number%5==0)
number/=5;
return (number==1)?true:false;
}
int GetUglyNumber(int index)
{
if(index<=0)
return 0;
int number=0;
int uglyFound=0;
while(uglyFound<index)
{
++number;
if(IsUgly(number))
{
++uglyFound;
}
}
return number;
}
上面的方法不管一个数是否为丑数都要对其进行计算,因此效率低下。
另一种方法:只计算丑数。
根据丑数的定义,丑数应该是另一个丑数乘以2、3或者5的结果(1除外)。因此可以创建一个数组,里面的数字是排好序的丑数,每一个丑数都是前面的丑数乘以2、3或者5得到的。
关键在于如何确保数组里面的丑数是排好序的。假设数组中已经有若干个丑数排好序后存放在数组中,并且把已有最大的丑数记作M。
如何生成下一个丑数?该丑数肯定是前面某一个丑数乘以2、3或者5的结果,所以首先考虑把已有的每个丑数乘以2。在乘以2的时候,能得到若干小于或者等于M的结果。由于是按顺序生成,因此小于或者等于M肯定已经在数组中。也会得到若干大于M的结果,但我们只需要第一个大于M的结果。
事实上,并不一定要把每一个整数都乘以2、3、5。对于乘以2而言,肯定存在某一个丑数T2,排在它前面的每一个丑数乘以2的结果都会小于已有的最大的丑数,在它之后的每一个丑数乘以2的结果都会大于最大的丑数。只需记下这个丑数的位置,同时每次生成新丑数时更新T2即可。对于3、5类似。
我们把得到的第一个乘以2后大于M的结果记为M2,把第一个乘以3后大于M的结果记为M3,把第一个乘以5后大于M的结果记为M5。下一个丑数应该为min{M2,M3,M5}。
int Min(int number1,int number2,int number3)
{
int min=(number1<number2)?number1:number2;
min=(min<number3)?min:number3;
return min;
}
int GetUglyNumber_Solution2(int index)
{
if(index<=0)
return 0;
int *pUglyNumbers=new int[index];
//第一个丑数默认为1
pUglyNumbers[0]=1;
int nextUglyIndex=1;
int *pMultiply2=pUglyNumbers;
int *pMultiply3=pUglyNumbers;
int *pMultiply5=pUglyNumbers;
//当还没找到那么多丑数
while(nextUglyIndex<index)
{
//在M2,M3,M5中找最小的作为新丑数
int min=Min(*pMutiply2*2,*pMultiply3*3,*pMultiply5*5);
pUglyNumbers[nextUglyIndex]=min;
//当T2*2<最大的丑数,继续找下一个T2,减少计算
while(*pMultiply2*2<=pUglyNumbers[nextUglyIndex]);
++pMultiply2;
//当T3*3<最大的丑数,继续找下一个T3,减少计算
while(*pMultiply3*3<=pUglyNumbers[nextUglyIndex]);
++pMultilpy3;
//当T5*5<最大的丑数,继续找下一个T5,减少计算
while(*pMultiply5*5<=pUglyNumbers[nectUglyIndex]);
++pMultiply5;
//移动下标,找下一个丑数
++nextUglyIndex;
}
int ugly=pUglyNumbers[nextUglyIndex-1];
delete[] pUglyNumbers;
return ugly;
}