本文参考官方文档进行总结得出:https://numpy.org/devdocs/reference/generated/numpy.array_split.html#numpy.array_split
numpy.split
numpy.
split
(ary, indices_or_sections, axis=0)
将数组拆分为多个子数组,作为ary的视图。
参数:
ary : ndarray
数组可分为子数组
indices_or_sections : int or 1-D array
如果indexs_or_sections是整数,N,则该数组将沿axis划分为N个相等的数组。 如果无法进行这种拆分,则会引发错误。
如果indexs_or_sections是一维排序的整数数组,则该条目指示数组沿axis的拆分位置。
axis:int, optional
沿axis分割,默认值为0
返回:
sub-arrays:list of ndarrays
作为ary视图的子数组列表
示例:
>>> x = np.arange(9.0) >>> np.split(x, 3) [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]
>>> x = np.arange(8.0) >>> np.split(x, [3, 5, 6, 10]) [array([0., 1., 2.]), array([3., 4.]), array([5.]), array([6., 7.]), array([], dtype=float64)]
numpy.array_split
numpy.
array_split
(ary, indices_or_sections, axis=0)
将一个数组拆分为多个子数组
请参阅split介绍。 这些函数之间的唯一区别是array_split允许indices_or_sections是一个不等分轴(axis)的整数。 对于长度为l的数组(应该拆分成n个部分),它返回大小为l/n+1(先算1/n ,再加1)的l%n个子数组,其余的大小为l/n。
示例:
>>> x = np.arange(8.0) >>> np.array_split(x, 3) [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]
>>> x = np.arange(7.0) >>> np.array_split(x, 3) [array([0., 1., 2.]), array([3., 4.]), array([5., 6.])]