HDU 1596 find the safest road(最短路,最大权值积,Dijkstra)

Problem Description
XX星球有很多城市,每个城市之间有一条或多条飞行通道,但是并不是所有的路都是很安全的,每一条路有一个安全系数s,s是在 0 和 1 间的实数(包括0,1),一条从u 到 v 的通道P 的安全度为Safe(P) = s(e1)*s(e2)…*s(ek) e1,e2,ek是P 上的边 ,现在8600 想出去旅游,面对这这么多的路,他想找一条最安全的路。但是8600 的数学不好,想请你帮忙 ^_^
 

Input
输入包括多个测试实例,每个实例包括:<br>第一行:n。n表示城市的个数n<=1000;<br>接着是一个n*n的矩阵表示两个城市之间的安全系数,(0可以理解为那两个城市之间没有直接的通道)<br>接着是Q个8600要旅游的路线,每行有两个数字,表示8600所在的城市和要去的城市
 

Output
如果86无法达到他的目的地,输出"What a pity!",<br>其他的输出这两个城市之间的最安全道路的安全系数,保留三位小数。
 

Sample Input
 
 
3 1 0.5 0.5 0.5 1 0.4 0.5 0.4 1 3 1 2 2 3 1 3
 

Sample Output
 
 
0.500 0.400 0.500

 


        题意:给出一张图,已知图中所有点之间的关系,求使给定两点间所有道路中权值之积最大的那一条道路的权值积。

        思路:对不同起始点分别运用蓝白点Disjkstra;

        注意:

                dis数组不需要初始化为极大值,应初始化为一个极小值(比如本题0就可以);

                dis[起点]=1;

                状态转移方程:dis[j]=max(dis[j],dis[k]*w[k][j]);

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
double w[1001][1001];
bool u[1001];
double dis[1001];
int n;
void dijkstr(int s)
{
    memset(u,0,sizeof(u));
    for(int i=0;i<=n;++i)dis[i]=0;
    dis[s]=1;
    for(int i=1;i<=n;++i)
    {
        int k=0;
        for(int j=1;j<=n;++j)
        {
            if(!u[j]&&dis[j]>dis[k])k=j;
        }
        u[k]=1;
        for(int j=1;j<=n;++j)
        {
            if(!u[j])
            {
                dis[j]=max(dis[j],dis[k]*w[k][j]);
            }
        }
    }
}
int main()
{
    while(~scanf("%d",&n))
    {

        for(int i=1;i<=n;++i)
            for(int j=1;j<=n;++j)
                scanf("%lf",&w[i][j]);
        int m=0;
        scanf("%d",&m);
        for(int i=1;i<=m;++i)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            dijkstr(x);
            if(dis[y])printf("%.3lf\n",dis[y]);
            else printf("What a pity!\n");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值