中国东北长白山混交林生态区GEDI LiDAR数据与多传感器影像的集成,提高了林分的估算能力

**

《中国东北长白山混交林生态区,通过GEDI LiDAR数据与多传感器影像的集成提高林分蓄积量的估算能力》 —文献阅读笔记

摘要:林分蓄积量是生产力和碳储存的一个重要指标。传统上,林分蓄积量是通过现场采样、合成孔径雷达(SAR)和光学图像来估计的,这些都存在饱和问题。尽管光探测和测距(LiDAR)技术降低了信号的饱和度,但其大规模应用受到空间连续性的阻碍。为了解决这个问题,最近发布的全球生态系统动态调查(GEDI)LiDAR数据、哨兵一号SAR、哨兵二号多光谱仪器(MSI)和高级土地观测卫星(ALOS)数字表面模型(DSM)图像被整合在一个点-线-多边形框架下进行蓄积量建模和估算。采用激光脚点级的LiDAR变量作为线性桥梁,来连接实地地块和全覆盖的多传感器图像。结果显示,长白山混交林生态区(CMMFE)的蓄积量沿海拔梯度显示出变化,范围从47.56到277.30立方米/公顷,平均值为151.39立方米/公顷。此外,基于独立验证样本的准确性比较表明,在点-线-多边形框架下整合GEDI LiDAR数据比传统的点-多边形方法表现更好,后者直接将实地样本与多传感器图像联系起来。相应的估计误差从22.08%下降到15.21%。来自LiDAR的冠层覆盖和树高,来自L波段InSAR的高程,以及MSI红边波段的光谱指数是异质温带森林中林分蓄积量绘制的关键。这一比较还表明,通过点-线-多边形框架整合LiDAR,采用了2/3的建模点,但比仅基于多传感器图像的传统方法获得了更精确的估计,这意味着类似的研究需要的实地采样工作更少。因此,作为在点-线-多边形框架下对GEDI LiDAR数据与多传感器图像相结合的一次开创性探索,本研究为异质森林的蓄积量估计提供了一种有效的方法。
1 Introduction
长白山混交林生态区(CMMFE)包括中国和朝鲜的长白山地区。这个生态区是中国东北地区最多的自然保护的落叶树和广泛的晚期针叶林(Olson等人,2001)。由于温带气候和相对孤立,该地区还支持许多地方性特有的植物物种,但却是各种植物群落的中心(Olson等人,2001;Wang等人,2011;Chen等人,2019a)。林分蓄积量是世界级国家森林资源调查的一个共同参数,构成了生态系统健康和各级决策的基础(Fazakas 等,1999;Cond´es 和 McRoberts, 2017; Nilsson等人, 2017)。中国东北地区CMMFE的林分蓄积量占中国木材产量的三分之一以上,也是地上生物量估算的基线。(Wang, 2006; Zhang et al., 2015; National Forestry and Grassland 局,2019)。因此,对该生态区的林分蓄积量进行空间上的连续估计,对于量化和监测与森林有关的碳排放、森林退化和生态安全至关重要。(Chirici等,2016;Chen等,2020)。
传统上,林分蓄积量是通过基于树种敏感的蓄积量表,通过采伐树木的冠层高度和直径的测量值来估计的,这种方法成本高且受到空间的限制(Hyyppa ¨et al.,2000;Boisvenue等,2016)。结合各种遥感数据和实地测量的样本已成为一种有效的方法,以产生林分蓄积量的全覆盖估计(Santoro等人,2011;Saarela等人,2015;Mauya等人,2019)。由于水平森林结构所特有的反射率,光学传感器首先被应用于通过现场采样评估林分蓄积量(Kilpel¨ainen和Tokola,1999;Lausch等人,2017;Chrysafis等人,2019)。 然而,由于穿透云层和森林树冠的能力差,基于光学传感器的林分蓄积量估计受到严重的饱和问题(Hyypp¨a等人,2000;Long等人,2019)。主动式微波传感器具有更好的穿透性和来自不同频段、极化和成像几何的详细垂直信息,如合成孔径雷达(SAR),在林分蓄积量测绘中享有盛名(Lausch等人,2017;Chen等人,2020)。虽然,在封闭的异质性森林中,SAR仍然面临着蓄积量超过200立方米/公顷的信号饱和。(Santi等人,2015;Zhang等人,2019)。在过去的几年里,光探测和测距(LiDAR)在森林三维建模和绘图方面显示出巨大的潜力,减少了饱和问题并提高了结果的精度(Cartus等人,2012;Puliti等人,2018)。由于缺乏空载传感器和空间连续性,LiDAR数据在大尺度的林分蓄积量测绘中仍是辅助性的。
上述用于林分蓄积量估算的遥感数据都有强、弱点(Ranson等,2007;Thiel和Schmullius,2016;de Souza等,2019;Chirici等,2020)。通过整合多传感器遥感建模进行时空统一的蓄积量估计,已经取得了进展(Lehmann等人,2015;de Souza等人,2019;Mauya等人,2019;Xie等人,2020)。Hyde等人(2006)根据LiDAR、雷达和Landsat ETM+传感器的变量绘制了森林高度和生物量图,并得出结论,所有传感器的组合比LiDAR单独使用更准确。Hawryło和Węzyk˙(2018)使用Sentinel-2卫星图像和机载点云来估计林分蓄积量,并取得比使用单一传感器数据更准确的预测结果。一般采用LiDAR数据将实地测量的采样点与全覆盖影像连接起来,采用两个步骤:将实地测量的蓄积量与LiDAR变量连接起来;然后,通过卫星预测器对LiDAR估算的林分蓄积量进行建模,进行最终测绘(Matasci等人,2018;Li等人,2020)。这种方法是点-线-多边形框架,并获得了准确的森林参数空间映射(Wang等人,2020)。然而,由于免费获取的卫星传感器的限制,在点-线-多边形框架下,通过整合LiDAR数据和多传感器图像来大规模估计林分蓄积量的做法还很少被报道。
自2019年4月以来,已经收集和处理了开源的GEDI LiDAR观测数据,为林分蓄积量估计创造了有用的结果(Magruder等人,2019;Dubayah等人,2020;Potapov等人,2021)。其中,树冠覆盖率和高度分别与胸径(DBH)和树高呈线性关系,对森林体积估计有很大潜力(Narine等,2019;Puliti等,2020)。受脚点格式和时空分辨率的限制,如果没有多传感器影像的帮助,使用GEDI数据来获取到处的林分蓄积量仍然会遇到困难。哨兵1号和哨兵2号因免费获得具有精细时空分辨率和全球覆盖的C波段SAR和多光谱仪器(MSI)影像而闻名,具有大规模绘制林分蓄积量测绘的能力(Mauya等人,2019;Chen等人,2020)。从森林中反向散射的C波段SAR信号取决于树木数量、树冠覆盖率和高度以及背景,这使得它可以用于估算林分蓄积量(Dos Reis等人,2019;Liu等人,2019a)。基于光合作用过程中对红光和蓝紫光的强烈吸收,从森林中反射出来的MSI信号包含了生物物理变量和植被生长状态的信息,可用于林分蓄积量估计(Dube等人,2015;Ahmadi等人,2020)。日本对地观测卫星(ALOS)数字表面模型(DSM)提供了来自L波段干涉SAR(InSAR)的精确的地形指标,并且作为当地水热条件的代表,有助于林分蓄积量测绘(Rahlf等人,2014;Tadono等人,2015)。因此,有必要进一步探索如何通过整合GEDI LiDAR数据和来自Sentinel-1、Sentinel-2和ALOS DSM的多传感器影像,在点-线-多边形方法下实现大规模林分蓄积量测绘。
为了解决前面提到的差距,本研究在点-多边形建模框架下,将实地样本、GEDI LiDAR数据和多传感器影像结合起来,获得了2019年CMMFE地区最新的林分蓄积量图。具体而言,脚点级的GEDI LiDAR数据被用于将地面测量点与来自哨兵一号、哨兵二号和ALOS DSM的全覆盖影像关联起来,用于大面积制图。其目的是 (1)量化林分蓄积量与来自LiDAR、C波段SAR、MSI和L波段InSAR的变量之间的关系;(2)比较点-线-多边形框架下的额外整合GEDI LiDAR数据与仅基于多传感器影像的传统点-多边形方法;以及(3)通过整合GEDI LiDAR数据和多传感器图像绘制林分蓄积量,提供管理建议。

2.Material and methods
2.1. 研究区域
该研究区属于世界自然基金会(WWF)定义的CMMFE(WWF ID:PA0414)。它位于中国东北的吉林省和黑龙江省的山区交界处,面积为204,157公顷(图1)。由于其四季分明和受季风影响的湿润大陆性气候,该地区的年平均温度和降水量分别为5.14◦C和636.14毫米(牡丹江市统计局,2018;延边州统计局,2018)。森林类型主要是天然落叶阔叶和阔叶-针叶混合林(Olson等,2001)。主导树种包括Betula costata(Trautv.)、Tilia amurensis(Rupr.)、Fraxinus mandschurica(Rupr.)、蒙古栎(Quercus spp.)和Juglans mandshurica(Maxim)。典型土壤为深褐色的土和沼泽地。
2.2数据
2.2.1现场数据
受劳动力、获取、天气等因素限制,田野调查仅在2019年5月至7月于敦化市林业局所属林场内进行,采用分层抽样设计。两个小组按照国家森林资源调查指南(MOF,1982)进行了测量。总共测量了1116个25米大小的样本(图1a)。根据中国国家标准(LY/T 1353-1999)中的树木体积表(中国林业局,1999),通过测量的树高和DBH,即距离地面1.3米,估算林分蓄积量。
2.2.2. 多传感器数据和预处理
图1. 研究区域和地面采样点(a),以及经过处理的遥感数据集,包括全球生态系统动态调查(GEDI)光探测和测距(LiDAR)(b)。哨兵一号(S1)合成孔径雷达(SAR)(c),哨兵二号(S2)多光谱仪器(MSI)L2A(d),高级陆地观测卫星(ALOS)数字表面模型(DSM)(e),以及ALOS-2森林/非森林(FNF)数据。
本研究中使用的多传感器卫星数据列于表1.为了使野外样本和遥感数据的时相统一,从土地过程分布式主动存档中心(LP DAAC)下载了2019年5月至7月的GEDI L2B数据,以获得树冠覆盖和树木高度(图1b和2),正如以前的研究所证明的那样,这些数据在很大程度上可以线性地解释林分蓄积量(Naesset,1997; Giannico等,2016; Xu等,2019 )。GEDI数据记录了各种树木成分在距地面不同高度返回的能量,并包含结构信息,如表面地形和树冠高度、覆盖度和垂直剖面的指标(Dubayah等人,2020;Potapov等人,2021)。来自GEDI L2B(GEDI2B)的树冠覆盖率和树木高度是基于从L1B波形中得出的方向性差距概率曲线(NiMeister等人,2001 )。通过rGEDI软件包使用R软件(Silva等人,2020年)从GEDI L2B数据中提取了共54,829组树冠覆盖、最高检测回波的海拔(elev_highestreturn)和最低模式的中心(elev_lowestmode)。elev_highestreturn和 elev_lowestmode之间的差异被计算为树高的度量。删除无效值后,获得了22,350对树冠覆盖率和树高。
在有效的GEDI线内的1014个采样点被选用于林分蓄积量模型。剩下的102个点用于独立验证和准确性比较(图2)。建模点被随机分为2/3用于训练,1/3用于评估集,用于建立和评估基于GEDI的模型。
2019年5月至7月的C波段SAR的镶嵌图像(图1c)是由22张Sentinel-1图像在地面探测水平上生成的,包括选择、掩膜、转换为归一化背散射系数和镶嵌(Hird等人,2017)。基于GEE,对一系列90张Sentinel-2A L2A卫星图像进行处理,通过去除各种类型的云和噪声,进行合成功能,去合成10米空间分辨率的多光谱波段的中值(图1d)(Hird等人,2017)。ALOS和ALOS-2森林/非森林(FNF)地图的DSM数据从日本宇宙航空研究开发机构下载(图1a和e)。DSM数据被重采样为10米的空间分辨率,用于提取地形指标(图2)。所有预处理的卫星数据都被重新投射到相同的投影中。
2.3 方法
为了通过整合GEDI数据来改进对林分蓄积量的估计,本研究的工作流程,如图2所示,包含三个主要部分:(1)使用混合方法从ALOS-2 FNF图和Sentinel-2镶嵌影像中提取森林面积,如第2.3.1节所述;(2)通过建立一个点-线-多边形框架额外整合GEDI LiDAR数据;以及(3)在点-多边形方法下通过样本和多传感器图像进行传统建模,进行精度比较。在点-线-多边形框架中,用于训练的建模点通过地理加权回归(GWR)与GEDI线相关联,如2.3.2节所述。然后,如第2.3.3节所述,GEDI线被用于通过随机森林(RF)来绘制到处的林分蓄积量。此外,还通过基于建模点和多传感器图像的RF实现了传统方法。换句话说,两个框架中使用的RF模型在输入方面有所不同,点-线-多边形框架使用GEDI线,传统方法使用建模点,但在输出方面是相同的,都是林分蓄积量多边形。点-线-多边形框架和传统方法的主要区别是前者插入了GEDI数据作为线性的桥梁。两个框架都采用了RF模型和多传感器影像,即Sentienl-1、Sentienl-2和ALOS DSM。
图2. 与传统的点-线-多边形方式相比,点-线-多边形框架的森林SV估算的整体工作流程
2.3.1. 关于获得2019年林区的混合方法
Wang和Chen(2020)提出的混合方法被用来识别森林区域,包括基于目标的影像分析(OBIA)、分层影像分类、人工修改的视觉解译和溶解(?)(图3)。这种方法以一致的分类方案有效地完成了变化分析,并对现有的森林覆盖制图工作进行了评估。
该方法将ALOS-2 FNF图的类别,即森林、非森林和水,作为第一阶段的数据(图3a)。无云的Sentinel-2镶嵌影像(图3b)被用来作为第二阶段的数据。这种混合方法的工作流程包括OBIA在eCognition Developer 9.0软件(Blaschke,2010;Jia等人,2020;Mao等人,2020)上的分割过程。在eCognition软件中定义了比例、形状/颜色和紧凑度/平滑度,以约束像素增长算法(?)(Duro等人,2012)。经过一个测试参数的 "试错 "过程后,目标和森林之间达到了令人满意的匹配,尺度、形状和紧凑度的值分别为150、0.1和0.5(图3c)。在eCognition上,用分层影像分类法将第二阶段的对象按第一阶段的对象进行分类(图3d)。然后,在谷歌地球更精细的影像帮助下,对第二阶段数据中的分割物体进行了视觉解读和人工修改(图3e)。之后,进行溶解,得到了10米空间分辨率的2019年最终森林地图(图3f)。
图3. 基于ALOS-2 FNF图(a)和S2图像(b)的混合方法。它包括基于对象的图像分析,尺度、形状和紧凑性的值分别为150、0.1和0.5(c),分层图像分类(d),人工修改的视觉解释(e),以及溶解(f)
2.3.2. 通过GWR从GEDI数据预测林分蓄积量线
许多研究表明,利用LiDAR数据,林分蓄积量与树冠覆盖率和树木高度有一般的线性关系(Means等人,2000;Tompalski等人,2014;Bont等人,2020)。然而,这种林分蓄积量与树冠覆盖和树木高度的关系因地点而异。因此,在本研究中,使用地理加权回归(GWR)来实现从GEDI数据中提取林分蓄积量(图4)。 图4. 通过地理加权回归(GWR)建模从GEDI数据中提取SV的说明。W(u, v)是一个权重矩阵,以确保那些离未知点更近的观测值对结果的影响更大。
GWR基于局部平滑的思想模拟局部关系,单独计算对每一个具有未知蓄积量的位置服从距离衰减的参数(Brunsdon等人,1996,1998)。详细来说,离测量位置越近,分配的权重就越大(Chen等人,2018)。局部加权最小平方法被用来将蓄积量测量的空间位置嵌入到回归中(Fotheringham等,2002)。GWR模型,如公式(1)所示,通过确定必要的参数,即模型和核类型,以及带宽选择方法和标准,利用GWR4软件在训练样本的基础上建立了基于GEDI的林分蓄积量估计(Nakaya等人,2014;Ahmed等人,2017)。通过338个评估样本,根据均方根误差(RMSE)、平均误差(ME)和决定系数(R2)来评估GWR对蓄积量的模型精度(Chen等,2019b)。
其中(ui,vi)是估计点i的位置;β0(ui,vi)是截距;βk(ui,vi)是冠层覆盖或树高的系数;xik是解释变量k在点i的值,即冠层覆盖或树高;εi是误差,假定为正态分布,均值为零,方差不变;X是xik的矩阵;SV是测量的蓄积量值向量;W(ui,vi)是由di(ui,vi)和b决定的权重矩阵,包括固定或自适应带宽的高斯和双平方核类型,以确保离i点较近的测量结果影响更大。di(ui,vi)是测量值i与位置(ui,vi)之间的距离;b是GWR的最佳带宽,由一种方法和标准选择,控制距离对权重值的影响。
2.3.3. 通过RF估计林分蓄积量的多边形
在建立RF模型之前,对遥感指数进行了提取和过滤,以获得预测变量。在本研究中,选择并提取了53个遥感指数用于蓄积量估计,其中22、26和5个指标分别来自SAR、MSI和DSM(表2)。对树木结构敏感、对地形不敏感的归一化反向散射系数和纹理特征被选中,并通过SNAP软件中的Sentinel-1工具箱从镶嵌影像中提取(Dos Reis等,2019;Mauya等,2019;Chen等,2020 )。结果是有希望的,表明MSI的红边波段反射率和光谱指数改善了林分蓄积量的估算(Puliti等人,2018;Astola等人,2019)。SNAP软件中的Sentinel-2工具箱被用来计算来自Sentinel-2镶嵌图像的MSI指数(表2)。根据以往的研究,通过ArcGIS软件的Spatial Analyst从ALOS DSM中提取相关地形指标(Wijaya等,2010;Chen等,2020)。
林分蓄积量估计的预测变量是在退化(?)变量的相关度后,通过成对的皮尔逊相关分析确定的,影响了射频模型的输出精度。(Millard和Richardson,2015)。这包括在SPSS软件中进行的两个步骤:显著相关变量的候选选择(P<0.05);通过共线性(r≥0.8)的候选处置,剩下的一个与测量的林分蓄积量最相关(Xu等人,2018a;Chen等人,2020)。
RF已被广泛地应用于利用遥感数据进行的森林参数测绘,由于对训练样本中的噪声不敏感,通过对比评估取得了更高的精度(Shataee等,2012;Fassnacht等,2014;Zhao等,2019)。它是在WEKA软件中建立的,有两个参数,即分割节点的特征数和待优化的树数(Chen等人,2019b)。它还能够根据平均方差的减少来识别变量的重要性(Wittke等人,2019 )。为了比较传统的和点-线-多边形框架的蓄积量测绘,为RF建模输入了两组变量(图5)。根据RMSE、ME、R2和相对改进(RI),通过102个独立验证点对模型进行了比较(Chen等人,2019b)。到处上的林分蓄积量估计是成员的平均值。最终的林分蓄积量图由2019年的森林掩膜得到(图5)。
图5. 通过随机森林(RF)建模,从ALOS和Sentinel系列图像中估计SV的描述
3.Results
3.1. 从GEDI数据和GWR模型中提取蓄积量
森林蓄积量的测量值从5到288.63立方米/公顷不等,主要低于200立方米/公顷(图6a)。测量值按相同的频率分为六个等级,以进一步比较蓄积量(图6a)。测量的蓄积量的中位数和标准差(SD)值分别为151.29和47.07立方米/公顷(图6b)。随着海拔的升高,测量的蓄积量的平均值增长到162.61立方米/公顷的峰值,然后下降到78.49立方米/公顷的低点。 图6. 研究地点从1号地块到111,6号地块的林分蓄积量(SV)样本的测量剖面(a)和不同海拔高度的SV值分布(b)。框内描述的是平均值±SD范围内的数值,框内的线是中位数,方块表示平均值,破折号是5-95%的盒须,交叉点表示最小和最大的数值。
由676个训练样本建立的GWR模型采用了高斯方法,其中权重函数是一个固定的高斯核。该模型通过使用黄金选择法和修正的Akaike信息准则(AICc,小样本偏差修正的AIC)发现最佳带宽为0.016。通过338个样本评估的准确性,达到了RMSE、ME和R2分别为27.27、-1.92立方米/公顷和0.81。树冠覆盖率系数的绝对平均值为21.9时,总体上显示出比树高0.21更强的解释与蓄积量关系的能力。变化系数(CV)值表明,树高的影响(CV=14.3)比冠层覆盖的影响(CV=3.3)具有更强的可变性。通过GWR从22,350对冠层覆盖和树高中提取的蓄积量值在45.26至280.57立方米/公顷之间。测量蓄积量的中值和SD值分别为150.78和22.36立方米/公顷(表3)。总的来说,从GEDI线得出的林分蓄积量与测量值有类似的分布(图6)。
3.2 预测变量
共有45个变量与林分蓄积量有显著关系(表4),包括16个来自SAR,25个来自MSI,以及4个来自DSM。VV后向散射与测量的蓄积量有正相关关系。在SAR的10种纹理特征中,VV的GLCM平均值和VH的对比度与蓄积量关系最大。也就是说,VV和VH后向散射物的纹理规则性和平滑度的增长表明林分蓄积量在增加。还证明了VV的纹理特征比VH的纹理特征与蓄积量的关系更大。
至于MSI变量,B2、B3、B4、B5、B11、B12、TCW和TWB与蓄积量呈负相关,而其余17个变量呈正相关。哨兵2号的红边波段所涉及的反射率和光谱指数表明与测量的蓄积量有密切联系。MSI贡献了比C波段SAR更多的对蓄积量估计敏感的变量。
除了SPI(p<0.05),所有基于DSM的地形指标对测量蓄积量的增长都显示出强烈的正影响(p<0.01)。结果显示,来自DSM的变量与来自MSI的变量有类似的表现。在蓄积量建模中输入的预测变量是表4中标记为 "是 "的17个预测变量,它们与蓄积量显著相关(p < 0.05),没有冗余(r < 0.8)。总的来说,SAR的VV纹理特征、反射率和MSI及DSM衍生的高程的光谱指数等对蓄积量比较重要。
3.3. 通过RF模型进行蓄积量估计
在300棵树,特征数量设置为4个的情况下,分别建立了基于点-线-多边形和传统框架的RF模型。结果显示,由点线面框架和传统框架获得的RF模型的属性重要性排名相似(图7)。一般来说,H、S2REP、B12、PVI和S是蓄积量建模中最重要的变量。地形指标、反射率和光谱指数比VV通道的纹理特征显示出更大的影响。VV反向散射和VH通道的纹理特征的影响很小。
图7. RF模型对林分体积估计的属性重要性
表5显示了通过102个验证样本从点-线-多边形和传统模型中估计蓄积量的准确性。为了更好地评估和比较准确性,蓄积量的平均测量值(图6中的148.78立方米/公顷)用于划分ME和RMSE。ME值显示,两个模型都高估了林分蓄积量。比较表明,整合GEDI LiDAR数据作为样本点和遥感影像之间的线性桥梁,比直接建模测量蓄积量和影像之间的关系更准确(图8)。根据RMSE值,结合GEDI线明显提高了蓄积量建模的准确性,提高了31%(6.87立方米/公顷)。
图8. 验证样品中估计的与测量的SV的散点图。
3.4. CMMFE的林分蓄积量
实施混合方法后,获得了2019年的森林区。基于点-线-多边形框架的林分蓄积量分布由上述RF模型绘制,然后将非森林区域,即水面和非森林区域屏蔽掉(图9a)。为了与实地测量值进行比较,林分蓄积量的估计值在六个层次上显示。每个层次都有相同数量的测量样本点(图6a)。估计的林分蓄积量接近于实地测量的数值,这可以从每个层次的相同图案中看出来(图9a)。在点-线-多边形框架下,研究区的林分蓄积量估计为47.56至277.30立方米/公顷,平均值和SD值分别为151.39和33.12立方米/公顷。
图9. 由GEDI LiDAR数据、ALOS和Sentinel系列影像得出的点-线-多边形框架估计的森林SV图(a)和单独的不同海拔高度的值(b)。SD和CV分别表示标准差和变异系数。
4.Discussion
4.1. 多传感器变量对蓄积量估计的作用
冠层覆盖率和树高系数的绝对值显示了LiDAR变量对林分蓄积量估计的作用。然而,这些系数因地点而异。在22,350对GEDI数据中,大多数树冠覆盖系数的绝对值都大于树高系数,而只有位于高海拔地区(>700米)的913个树高系数的绝对值较大。这表明,在研究区,林分蓄积量的空间变化受LiDAR的冠层覆盖影响很大,而在高海拔地区,树高对林分体积的影响更大。这可能是由于长白山混交林垂直地带的植被变化造成的。事实上,随着海拔的升高,林分密度下降,针叶林成为主导物种(Wang等人,2011),导致树高对林分蓄积量的影响比树冠覆盖率大。
SAR和MSI变量对蓄积量估计的重要性由相关系数(表4)和RF模型的属性重要性显示出来。海拔,作为L波段InSAR高度的代理指数,在本研究中对蓄积量的估计是最重要的。这可能是由于InSAR高度与蓄积量成正比(Gama等人,2010;Solberg等人,2013)。CMMFE的林分蓄积量沿着海拔梯度显示出变化(图6和图9),这与以前对长白植被区的研究一致(Li等,2011;Chen等,2020)。研究区低海拔地区的成熟蒙古橡树(Quercus spp.)优势天然林测量的蓄积量最大,为288.63立方米/公顷。这可能是由于温度对蒙古橡树林生产力的负面影响(Wu等人,2019)。林分蓄积量的空间变化比附近地区的报告要小(Wang等人,2011;Chen等人,2019a)。在这种高度异质的景观中的粗略分辨率和较小的海拔变化是估计的蓄积量变化较小的原因。研究区东南部的林分蓄积量,由于地表海拔变化很大,有较大的空间变化(图1e和9a)。研究区海拔与林分蓄积量之间的密切关系主要是由于长白山地区的水分、温度和植物多样性随着海拔的变化而发生了明显的变化(Guo等,2014;Shen等,2014;Cong等,2019)。
MSI变量具有很强的检索植被类型和水平结构的能力,如冠层覆盖和DBH,特别是红边波段的反射率作为叶绿素含量的代理,导致本研究和其他研究对林分蓄积量测绘的巨大影响(Pe~na等人,2012;Lausch等人,2017)。MSI变量的共线性和冗余是明显的,这表明预测因子的选择对基于光学传感器的蓄积量测绘至关重要。SAR传感器的反向散射与植被的粗糙度和含水量以及由于穿透性的林分蓄积量有关(Lu等人,2016;Chen等人,2020)。然而,来自Sentinel-1的反向散射对林分蓄积量测绘的影响很小。这是由C波段SAR的饱和问题造成的。在研究区,林分蓄积量的测量值部分高于200立方米/公顷(图6),这大于C波段后向散射的传统饱和值(Santi等人,2015)。结果表明,由于减少了对异质性的影响,SAR图像的纹理特征比原始后向散射物特别是VV通道的后向散射物更有利于蓄积量的估计(Dos Reis等,2019;Morin等,2019)。
基于四种传感器的变量的蓄积量估计比较表明,LiDAR数据比其他图像表现更好(RMSELiDAR-lines=27.27立方米/公顷,RMSEtraditional=32.85立方米/公顷)。这是因为LiDAR直接测量植被沿垂直轴的分布,并提供三维结构特征(Lefsky等人,1999;Lin,2019)。这些特征导致了对植被材料的总蓄积量和空间组织的精确评估,以及更大的饱和度值(Patenaude等,2004;Xu等,2018b)。然而,GEDI LiDAR数据的粗略时间分辨率导致缺乏对同一物候期研究区域的覆盖,这可能会在未来的工作中通过与机载LiDAR数据的结合来改善。简而言之,来自LiDAR的树冠覆盖率和树高,来自L波段InSAR的地形指数,以及来自MSI的红边波段光谱指数被推荐用于基于卫星数据的大规模异质性森林的林分蓄积量估计。
4.2. 点-线-多边形与传统框架的比较
传统方法估计的RMSE为22.08%,处于已发表的使用相同点-多边形方法的区域蓄积量图的平均水平(Kilpel ̈ ainen and Tokola, 1999; Chirici et al., 2008; Immitzer et al., 2016; Xu et al., 2018a; Dos Reis et al., 2019; Liu et al., 2019b; Hawryło et al., 2020 )。在这项研究中,由Sentinel-1 C波段SAR、Sentinel-2 MSI和ALOS DSM的图像建立的传统模型比由Landsat和RapidEye等单一光学传感器的数据获得的蓄积量更准确(M ̈ akel ̈ a和Pekkarinen, 2004; Xu等, 2018a )。这可以用Sentinel系列更高的分辨率和使用多传感器图像的优势来解释。然而,以前的传统模型加入了LiDAR衍生的预测因子,获得了比本研究的点-多边形模型更高的精度(Xu et al., 2018a; Hawryło et al., 2020)。研究还显示,整合LiDAR衍生的预测因子可以减少光学和C波段SAR传感器的饱和问题。然而,受成本限制,在传统模型中整合空中LiDAR数据与影像,很少有报道用于区域尺度的空间持续蓄积量测绘,更多的是采用点级比较(Xu等人,2018a;Hawryło等人,2020)。
点-线-多边形模型在两步中整合了空间LiDAR数据和多传感器图像。此外,由于GEDI LiDAR数据的时空分辨率比Sentinel和ALOS影像更粗,因此很难用传统的方法来整合所有传感器的蓄积量测绘。点-线-多边形模型的评估结果比传统模型更准确(表5和图8),这意味着GEDI数据和多传感器图像的整合适合于大规模林分蓄积量测绘。图8显示,传统模型低估大蓄积量和高估小蓄积量的误差有所减少。可能是因为从GEDI数据中提取的林分蓄积量线作为桥梁,减少了饱和问题和异质性,与卫星遥感影像的预测因子更好地匹配。因此,在未来的研究中,从GEDI线中提取蓄积量的准确性提高是至关重要的。在点-线-多边形框架下,有676个实际样本被用于建模。然而,传统模型的建模样本为1014个。这推断出,与传统框架相比,点线面框架可以减少野外采样的工作量。受野外采样面积和GEDI数据时间分辨率的限制,绘图结果在估计整个林分蓄积量范围方面仍有问题,特别是蓄积量值的最小和最大值。此外,RF算法只预测测量样本所涵盖的范围内的数值。因此,从GEDI线中提取的林分蓄积量的代表性和准确性对RF建模的要求很高。在未来的工作中,其他的映射算法,如Cubist,和支持向量机,可以用来尝试对林分蓄积量的映射,以提升精度。
这项研究的结论是,在点-线-多边形框架下整合GEDI数据和多传感器图像是一种很有前途的林分蓄积量绘图方法。应该注意的是,从GEDI线中提取蓄积量和制图算法是确定精度的必要条件。
4.3. 不确定性和森林管理
不确定性被认为是与遥感蓄积量相关的一个主要问题。它来自于原地测量、测量蓄积量的计算、遥感预测器和建模。在本研究中,树高测量和树木蓄积量表对林分蓄积量的参考值的不确定性有贡献。这种不确定性可以在未来的工作中通过重复测量和更新蓄积量表来减少。此外,本研究还考虑了多传感器衍生变量的不确定性。它们的不确定性通过各变量之间相似的采集时间和现场数据而减少。在本研究中,还提取并过滤了已发表论文中阐述的大量与蓄积量有关的变量(表2),以寻找合适的预测因素。采样大小与GEDI数据的空间分辨率相匹配,但与多传感器图像不一致,增加了不确定性。应进一步探索合适的采样大小。建模的不确定性在第4.2部分中显示为RMSE值。从GEDI线准确估计林分蓄积量对于减少建模的不确定性至关重要。各种空间预测方法和基于GEDI的变量将被用于未来的林分蓄积量测绘。
为了实现可持续的森林管理,应根据林分蓄积量的空间变化采取某些措施。对林分蓄积量密度高的中海拔森林应进行疏伐以增加空间和资源。低海拔的森林应该被封闭起来进行耕种。在体积较小的地区,急需进行增量砍伐。在高海拔地区(≥700米)需要进行先进的种植以及人为的促进自然再生。
5 结论
本研究的主要优点是首次在点-线-多边形框架下,通过野外采样、GEDI LiDAR数据以及Sentinel-1、Sentinel-2和ALOS DSM的多传感器图像,绘制了中国东北地区CMMFE的林分蓄积量图。具体来说,部分覆盖的GEDI LiDAR线作为桥梁,将野外样本和全覆盖的多传感器影像联系起来。
结果表明,与传统的点-多边形方法相比,在点-线-多边形框架下对GEDI LiDAR数据的额外整合(R2=0.88,RMSE=15.21%)提高了31%的准确性,该方法将野外样本与多传感器影像直接联系起来(R2=0.80,RMSE=22.08%)。来自GEDI LiDAR的树冠覆盖和树高,来自L波段InSAR的海拔,以及MSI红边波段的光谱指数,对于异质温带森林的林分蓄积量估计至关重要。结果还表明,通过点-线-多边形框架整合LiDAR,采用了2/3的建模点,但比仅基于多传感器图像的传统方法获得了更准确的估计,这意味着类似的研究需要更少的实地采样工作。总的来说,GEDI LiDAR数据和多传感器图像的整合产生了一个更准确的林分蓄积量图,同时减少了实地测量。
结果表明,CMMFE的林分蓄积量在海拔梯度上有变化,从47.56到277.30立方米/公顷。研究区中部海拔最高的森林,其平均值最小,为99.89立方米/公顷。而北部中等海拔的森林的平均值最大,为155.16立方米/公顷。作为在点-线-多边形框架下整合GEDI LiDAR数据和多传感器图像进行林分蓄积量绘图的先驱,本研究为其他研究人员提供了关于碳变化的信息方法,并支持决策者应对CMMFE的全球变暖。

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值