poj-2377模板题,最大生成树

Bessie has been hired to build a cheap internet network among Farmer John's N (2 <= N <= 1,000) barns that are conveniently numbered 1..N. FJ has already done some surveying, and found M (1 <= M <= 20,000) possible connection routes between pairs of barns. Each possible connection route has an associated cost C (1 <= C <= 100,000). Farmer John wants to spend the least amount on connecting the network; he doesn't even want to pay Bessie.

Realizing Farmer John will not pay her, Bessie decides to do the worst job possible. She must decide on a set of connections to install so that (i) the total cost of these connections is as large as possible, (ii) all the barns are connected together (so that it is possible to reach any barn from any other barn via a path of installed connections), and (iii) so that there are no cycles among the connections (which Farmer John would easily be able to detect). Conditions (ii) and (iii) ensure that the final set of connections will look like a "tree".

思路:就是把最小生成树的那个sort排序给反过来就好了,那么既然这么简单,为什么还要写博客类?,当然是先给自己的分类+1,要不然一直是0多尴尬。不过还要注意一个细节,累加和要用long long

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

const int maxn=2e4+10;

struct edge
{
	int from,val,to;
}edg[maxn];
int pre[maxn];
int n,m;

void ini()
{
	for(int i=0;i<=n;i++)
		pre[i]=i;
}

int find(int x)
{
	if(pre[x]==x)
		return x;
	return pre[x]=find(pre[x]);
}

void join(int x,int y )
{
	int fx=find(x),fy=find(y);
	pre[fx]=fy;
}

bool cmp(edge a,edge b)
{
	return a.val>b.val;
}

long long  solve()
{
	int eg=0;
	long long res=0;
	sort(edg+1,edg+1+m,cmp);
	for(int i=1;i<=m;i++)
	{
		if(find(edg[i].from)!=find(edg[i].to))
		{
			join(edg[i].from,edg[i].to);
			res+=edg[i].val;
			eg++;
		}
	}
	if(eg<n-1)
		return res=-1;
	return res;
}

int main()
{
	scanf("%d %d",&n,&m);
	for(int i=1;i<=m;i++)
	{
		scanf("%d %d %d",&edg[i].from,&edg[i].to,&edg[i].val);
	}
	ini();
	long long res=solve();
	cout<<res<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值