利用numpy中的方法delete删除数组的整行和整列

1.首先要导入第三方库 numpy
import numpy as np

2.利用delete()删除数组整行和整列的通用格式
np.delete(arr, obj, axis=None)

2.1.参数:
arr: 输入数组
obj: 切片,整数,表示哪个子数组要被移除
axis: 删除子数组的轴
axis = 0: 表示删除数组的行
axis = 1: 表示删除数组的列
axis = None:表示把数组按一维数组平铺在进行索引删除

2.2.返回值:一个新的子数组

3.具体实现历程

删除单行操作:
arr=np. array([[1,2,3],[4,5,6],[7,8,9]])
print arr
arr=np. delete(arr,2, axis=0)
print arr

删除多行操作:
arr=np. array([[1,2,3],[4,5,6],[7,8,9]])
print arr
arr=np. delete(arr,[1,2], axis=0)
print arr

删除单列操作:
arr=np. array([[1,2,3],[4,5,6],[7,8,9]])
print arr
arr=np. delete(arr,1, axis=1)
print arr

删除多列操作:
arr=np. array([[1,2,3],[4,5,6],[7,8,9]])
print arr
arr=np. delete(arr,[1,2], axis=1)
print arr

axis = None 操作
arr=np. array([[1,2,3],[4,5,6],[7,8,9]])
print arr
arr=np. delete(arr,1, axis=None)
print arr

如果您觉得有用请点赞和收藏一下吧,你将成为一个知识渊博的人!

PythonNumPy库中,reshape方法是一个非常重要的数组操作工具,它允许用户在保持元素总数不变的前提下,改变数组的维度。通过reshape,我们可以将一维数组重塑为多维数组,反之亦然,这对于数据预处理尤其重要。 参考资源链接:[Python数据分析:NumPy数组reshape操作详解](https://wenku.csdn.net/doc/7rm1wqdq3v?spm=1055.2569.3001.10343) 首先,我们需要导入NumPy库,通常使用`import numpy as np`。然后,我们可以通过数组对象的`reshape`方法或使用NumPy的`reshape`函数来改变数组形状。例如,假设我们有一个一维数组`arr = np.arange(12)`,我们想要将其重塑为一个3x4的二维数组。使用数组方法调用的代码如下: ```python arr_reshaped = arr.reshape(3, 4) ``` 或者使用NumPy函数调用的方式: ```python arr_reshaped = np.reshape(arr, (3, 4)) ``` 在使用reshape方法时,我们需要注意,新的形状(`newshape`参数)必须与原数组中元素的总数相匹配。如果`newshape`包含-1,NumPy将自动计算该维度的大小以保持元素总数不变。例如,如果原数组有12个元素,那么`arr.reshape(3, -1)`会自动计算出最后一个维度为4,因为3乘以4等于12。 关于内存顺序的选择,`order`参数可以是'C'、'F'、'A'或'k'。'C'代表按行的内存顺序,'F'代表按列的内存顺序,'A'代表保持数组现有的内存顺序,'k'则代表按照数组元素在内存中的存储顺序。在处理大型数组时,选择合适的内存顺序可以影响到数据访问的效率。通常情况下,'C'顺序在Python中更为常见,因为它符合C语言的内存布局。 最后,为了深入了解NumPy数组的reshape操作,建议参考《Python数据分析:NumPy数组reshape操作详解》。这本书将帮助你详细理解reshape的使用方法背后的工作原理,同时也会介绍更多相关的数组操作技术,这对于在数据科学领域中运用NumPy至关重要。 参考资源链接:[Python数据分析:NumPy数组reshape操作详解](https://wenku.csdn.net/doc/7rm1wqdq3v?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值