numpy的numpy.delete()/insert()/append()函数

1.numpy.delete(arr,obj,axis=None)
arr:输入向量
obj:表明哪一个子向量应该被移除。可以为整数或一个int型的向量
axis:表明删除哪个轴的子向量,若默认,则返回一个被拉平的向量

a = np.array(np.arange(12).reshape(3,4))

a
Out[301]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

np.delete(a,1,0)
Out[302]: 
array([[ 0,  1,  2,  3],
       [ 8,  9, 10, 11]])

np.delete(a,1,1)
Out[303]: 
array([[ 0,  2,  3],
       [ 4,  6,  7],
       [ 8, 10, 11]])

np.delete(a,[0,1],1)
Out[304]: 
array([[ 2,  3],
       [ 6,  7],
       [10, 11]])

np.delete(a,np.s_[::2],1)
Out[306]: 
array([[ 1,  3],
       [ 5,  7],
       [ 9, 11]])

注:
numpy.s_[::2]表示选取奇数。

2.numpy.insert(arr,obj,value,axis=None)
同理,value为插入的数值
arr:为目标向量
obj:为目标位置
value:为想要插入的数值
axis:为插入的维度

np.insert(a,1,[1,1,1,1],0)
Out[309]: 
array([[ 0,  1,  2,  3],
       [ 1,  1,  1,  1],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

3.numpu.append(arr,values,axis=None)
将values插入到目标arr的最后。
注意,这里values跟arr应该为相同维度的向量,例如,如下第一个为错误情况。

a
Out[310]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

np.append(a,[1,1,1,1],axis=0)
Traceback (most recent call last):

  File "<ipython-input-311-5585d9489cff>", line 1, in <module>
    np.append(a,[1,1,1,1],axis=0)

  File "D:\Anaconda\lib\site-packages\numpy\lib\function_base.py", line 4586, in append
    return concatenate((arr, values), axis=axis)

ValueError: all the input arrays must have same number of dimensions

正确形式为

a
Out[312]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

np.append(a,[[1,1,1,1]],axis=0)
Out[313]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [ 1,  1,  1,  1]])
1. 随机数生成函数: - numpy.random.rand:生成0到1之间的均匀分布随机数。 - numpy.random.randn:生成符合标准正态分布的随机数。 - numpy.random.randint:生成指定范围内的整数随机数。 - numpy.random.random_sample:生成0到1之间的随机数。 - numpy.random.choice:从给定的一维数组中随机选择元素。 - numpy.random.shuffle:随机打乱给定数组的顺序。 2. 添加删除数组元素的方法: - numpy.append:在数组末尾添加元素。 - numpy.insert:在指定位置插入元素。 - numpy.delete:删除指定位置的元素。 举例: ```python import numpy as np # 添加元素 arr1 = np.array([1, 2, 3]) arr2 = np.append(arr1, 4) print(arr2) # [1 2 3 4] # 插入元素 arr3 = np.insert(arr2, 2, 5) print(arr3) # [1 2 5 3 4] # 删除元素 arr4 = np.delete(arr3, 3) print(arr4) # [1 2 5 4] ``` 3. 数组合并与拆分: - numpy.concatenate:将两个或多个数组沿指定轴合并。 - numpy.stack:将两个或多个数组沿新轴合并。 - numpy.split:将一个数组沿指定轴拆分为多个子数组。 - numpy.hsplit:将一个数组沿水平方向拆分为多个子数组。 - numpy.vsplit:将一个数组沿垂直方向拆分为多个子数组。 举例: ```python import numpy as np # 合并数组 arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) arr3 = np.concatenate((arr1, arr2)) print(arr3) # [1 2 3 4 5 6] # 拆分数组 arr4 = np.array([[1, 2], [3, 4], [5, 6]]) arr5, arr6 = np.split(arr4, 2) print(arr5) # [[1 2], [3 4]] print(arr6) # [[5 6]] ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值