[GCN] 增加可视化+代码注释 of GitHub项目:Graph Convolutional Networks in PyTorch

增加可视化+代码注释 of GitHub项目:Graph Convolutional Networks in PyTorch

更详细的,强烈推荐另一篇博客:[GCN] 代码解析 of GitHub:Graph Convolutional Networks in PyTorch

GitHub地址

原项目GitHub(无结果可视化):

Graph Convolutional Networks in PyTorch

可视化+代码注释GitHub:

Modification of Graph Convolutional Networks in PyTorch

可视化结果展示

可视化通过visdom完成,由t-SNE算法完成数据降维。

降维到2维:

在这里插入图片描述

降维到3维:

在这里插入图片描述

代码注释

layers.py
import math

import torch

from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module


class GraphConvolution(Module):
    """
    Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
    """
    '''定义对象的属性'''
    def __init__(self, in_features, out_features, bias=True):
        super(GraphConvolution, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.FloatTensor(in_features, out_features))           # in_features × out_features
        if bias:
            self.bias = Parameter(torch.FloatTensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    '''生成权重'''
    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)          # .uniform():将tensor用从均匀分布中抽样得到的值填充。
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    '''前向传播 of 一层之内:即本层的计算方法:A_hat * X * W '''
    def forward(self, input, adj):
        support = torch.mm(input, self.weight)          # torch.mm:Matrix multiply,input和weight实现矩阵点乘。
        output = torch.spmm(adj, support)               # torch.spmm:稀疏矩阵乘法,sp即sparse。
        if self.bias is not None:
            return output + self.bias
        else:
            return output

    '''把一个对象用字符串的形式表达出来以便辨认,在终端调用的时候会显示信息'''
    def __repr__(self):
        return self.__class__.__name__ + ' (' \
               + str(self.in_features) + ' -> ' \
               + str(self.out_features) + ')'
models.py
import torch.nn as nn
import torch.nn.functional as F
from pygcn.layers import GraphConvolution

'''GCN类'''
class GCN(nn.Module):
    def __init__(self, nfeat, nhid, nclass, dropout):
        super(GCN, self).__init__()

        self.gc1 = GraphConvolution(nfeat, nhid)        # 第一层
        self.gc2 = GraphConvolution(nhid, nclass)       # 第二层
        self.dropout = dropout                          # 定义dropout

    '''前向传播 of 层间:整个网络的前向传播的方式:relu(gc1) --> dropout --> gc2 --> log_softmax'''
    def forward(self, x, adj):
        x = F.relu(self.gc1(x, adj))
        x = F.dropout(x, self.dropout, training=self.training)
        x = self.gc2(x, adj)
        return F.log_softmax(x, dim=1)
train.py
from __future__ import division
from __future__ import print_function

# 路径初始化
import os, sys
curPath = os.path.abspath(os.path.dirname(__file__))
rootPath = os.path.split(curPath)[0]
sys.path.append(rootPath)
sys.path.append('E:\\Anaconda\\lib\\site-packages\\')
# print(sys.path)
print('Path initialization finished!\n')

# 可视化增加路径
from time import time
from sklearn import manifold, datasets


# visdom显示模块
from visdom import Visdom

import time
import argparse
import numpy as np

import torch
import torch.nn.functional as F
import torch.optim as optim

from pygcn.utils import load_data, accuracy
from pygcn.models import GCN

def show_Hyperparameter(args):
    argsDict = args.__dict__
    print(argsDict)
    print('the settings are as following:\n')
    for key in argsDict:
        print(key,':',argsDict[key])

def train(epoch):
    t = time.time()
    model.train()
    optimizer.zero_grad()
    '''计算输出时,对所有的节点计算输出'''
    output = model(features, adj)
    '''损失函数,仅对训练集节点计算,即:优化仅对训练集数据进行'''
    loss_train = F.nll_loss(output[idx_train], labels[idx_train])
    # 计算准确率
    acc_train = accuracy(output[idx_train], labels[idx_train])
    # 反向传播
    loss_train.backward()
    # 优化
    optimizer.step()

    '''fastmode ? '''
    if not args.fastmode:
        # Evaluate validation set performance separately,
        # deactivates dropout during validation run.
        model.eval()
        output = model(features, adj)

    '''验证集 loss 和 accuracy '''
    loss_val = F.nll_loss(output[idx_val], labels[idx_val])
    acc_val = accuracy(output[idx_val], labels[idx_val])
    '''输出训练集+验证集的 loss 和 accuracy '''
    print('Epoch: {:04d}'.format(epoch+1),
          'loss_train: {:.4f}'.format(loss_train.item()),
          'acc_train: {:.4f}'.format(acc_train.item()),
          'loss_val: {:.4f}'.format(loss_val.item()),
          'acc_val: {:.4f}'.format(acc_val.item()),
          'time: {:.4f}s'.format(time.time() - t))

def test():
    model.eval()
    output = model(features, adj)
    loss_test = F.nll_loss(output[idx_test], labels[idx_test])
    acc_test = accuracy(output[idx_test], labels[idx_test])
    print("Test set results:",
          "loss= {:.4f}".format(loss_test.item()),
          "accuracy= {:.4f}".format(acc_test.item()))
    return output                                                   # 可视化返回output

# t-SNE 降维
def t_SNE(output, dimention):
    # output:待降维的数据
    # dimention:降低到的维度
    tsne = manifold.TSNE(n_components=dimention, init='pca', random_state=0)
    result = tsne.fit_transform(output)
    return result

# Visualization with visdom
def Visualization(result, labels):
    vis=Visdom()
    vis.scatter(
        X =  result,
        Y = labels+1,           # 将label的最小值从0变为1,显示时label不可为0
       opts=dict(markersize=5,title='Dimension reduction to %dD' %(result.shape[1])),
    )

'''代码主函数开始'''
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=False,
                    help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=200,
                    help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01,
                    help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
                    help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=16,
                    help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.5,
                    help='Dropout rate (1 - keep probability).')

args = parser.parse_args()


# 显示args
show_Hyperparameter(args)

# 是否使用CUDA
args.cuda = not args.no_cuda and torch.cuda.is_available()

np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
    torch.cuda.manual_seed(args.seed)

# Load data
adj, features, labels, idx_train, idx_val, idx_test = load_data()           # 返回可视化要用的labels

# Model
model = GCN(nfeat=features.shape[1],
            nhid=args.hidden,
            nclass=labels.max().item() + 1,
            dropout=args.dropout)
# optimizer
optimizer = optim.Adam(model.parameters(),
                       lr=args.lr, weight_decay=args.weight_decay)

# to CUDA
if args.cuda:
    model.cuda()
    features = features.cuda()
    adj = adj.cuda()
    labels = labels.cuda()
    idx_train = idx_train.cuda()
    idx_val = idx_val.cuda()
    idx_test = idx_test.cuda()

# Train model
t_total = time.time()
for epoch in range(args.epochs):
    train(epoch)
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))

# Testing
output=test()           # 返回output

# output的格式转换
output=output.cpu().detach().numpy()
labels=labels.cpu().detach().numpy()

# # 查看结果信息
# print(result)
# print(type(result))     # <class 'numpy.ndarray'>
# print(result.shape)     # (2708, 2)
# print(labels)
# print(type(labels))     # <class 'numpy.ndarray'>
# print(labels.shape)     # (2708, 2)

# Visualization with visdom
result=t_SNE(output,2)
Visualization(result,labels)

result=t_SNE(output,3)
Visualization(result,labels)
utils.py
import numpy as np
import scipy.sparse as sp
import torch


def encode_onehot(labels):
    classes = set(labels)       # set() 函数创建一个无序不重复元素集

    # enumerate()函数生成序列,带有索引i和值c。
    # 这一句将string类型的label变为int类型的label,建立映射关系
    classes_dict = {c: np.identity(len(classes))[i, :] for i, c in
                    enumerate(classes)}
    # map() 会根据提供的函数对指定序列做映射。
    # 这一句将string类型的label替换为int类型的label
    labels_onehot = np.array(list(map(classes_dict.get, labels)),
                             dtype=np.int32)
    # 返回int类型的label
    return labels_onehot

'''数据读取'''
# 更改路径。由../改为C:\Users\73416\PycharmProjects\PyGCN
def load_data(path="C:/Users/73416/PycharmProjects/PyGCN_Visualization/data/cora/", dataset="cora"):
    """Load citation network dataset (cora only for now)"""
    print('Loading {} dataset...'.format(dataset))
    ''' cora.content 介绍:
    cora.content共有2708行,每一行代表一个样本点,即一篇论文。
    每一行由三部分组成:
    是论文的编号,如31336;
    论文的词向量,一个有1433位的二进制;
    论文的类别,如Neural_Networks。总共7种类别(label)
    第一个是论文编号,最后一个是论文类别,中间是自己的信息(feature)
    '''

    '''读取feature和label'''
    # 以字符串形式读取数据集文件:各自的信息。
    idx_features_labels = np.genfromtxt("{}{}.content".format(path, dataset),
                                        dtype=np.dtype(str))

    # csr_matrix:Compressed Sparse Row marix,稀疏np.array的压缩
    # idx_features_labels[:, 1:-1]表明跳过论文编号和论文类别,只取自己的信息(feature of node)
    features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)

    # idx_features_labels[:, -1]表示只取最后一个,即论文类别,得到的返回值为int类型的label
    labels = encode_onehot(idx_features_labels[:, -1])

    # build graph
    # idx_features_labelsidx_features_labels[:, 0]表示取论文编号
    idx = np.array(idx_features_labels[:, 0], dtype=np.int32)

    # 通过建立论文序号的序列,得到论文序号的字典
    idx_map = {j: i for i, j in enumerate(idx)}
    edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset),
                                    dtype=np.int32)
    # 进行一次论文序号的映射
    # 论文编号没有用,需要重新的其进行编号(从0开始),然后对原编号进行替换。
    # 所以目的是把离散的原始的编号,变成0 - 2707的连续编号
    edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),
                     dtype=np.int32).reshape(edges_unordered.shape)

    # coo_matrix():系数矩阵的压缩。分别定义有那些非零元素,以及各个非零元素对应的row和col,最后定义稀疏矩阵的shape。
    adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),
                        shape=(labels.shape[0], labels.shape[0]),
                        dtype=np.float32)

    # build symmetric adjacency matrix
    adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)

    # feature和adj归一化
    features = normalize(features)
    adj = normalize(adj + sp.eye(adj.shape[0]))

    # train set, validation set, test set的分组。
    idx_train = range(140)
    idx_val = range(200, 500)
    idx_test = range(500, 1500)

    # 数据类型转tensor
    features = torch.FloatTensor(np.array(features.todense()))
    labels = torch.LongTensor(np.where(labels)[1])
    adj = sparse_mx_to_torch_sparse_tensor(adj)

    idx_train = torch.LongTensor(idx_train)
    idx_val = torch.LongTensor(idx_val)
    idx_test = torch.LongTensor(idx_test)

    # 返回数据
    return adj, features, labels, idx_train, idx_val, idx_test


'''归一化函数'''
def normalize(mx):
    """Row-normalize sparse matrix"""
    rowsum = np.array(mx.sum(1))
    r_inv = np.power(rowsum, -1).flatten()
    r_inv[np.isinf(r_inv)] = 0.
    r_mat_inv = sp.diags(r_inv)
    mx = r_mat_inv.dot(mx)
    return mx

'''计算accuracy'''
def accuracy(output, labels):
    preds = output.max(1)[1].type_as(labels)
    correct = preds.eq(labels).double()
    correct = correct.sum()
    return correct / len(labels)

'''稀疏矩阵转稀疏张量'''
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
    """Convert a scipy sparse matrix to a torch sparse tensor."""
    sparse_mx = sparse_mx.tocoo().astype(np.float32)
    indices = torch.from_numpy(
        np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
    values = torch.from_numpy(sparse_mx.data)
    shape = torch.Size(sparse_mx.shape)
    return torch.sparse.FloatTensor(indices, values, shape)
e_mx_to_torch_sparse_tensor(sparse_mx):
    """Convert a scipy sparse matrix to a torch sparse tensor."""
    sparse_mx = sparse_mx.tocoo().astype(np.float32)
    indices = torch.from_numpy(
        np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
    values = torch.from_numpy(sparse_mx.data)
    shape = torch.Size(sparse_mx.shape)
    return torch.sparse.FloatTensor(indices, values, shape)
  • 23
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
很抱歉,根据提供的引用内容,我无法提供关于"SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS"代码的信息。引用的内容主要介绍了上结点分类的半监督问题以及相关的研究方法和改进。如果您需要获取该代码,建议您查阅相关的学术论文或者在开源代码平台上搜索相关的项目。 #### 引用[.reference_title] - *1* [Semi-supervised classification with graph convolutional networks](https://blog.csdn.net/weixin_41362649/article/details/113232898)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Kipf-GCN《Semi-Supervised Classification With Graph Convolutional Networks》论文详解](https://blog.csdn.net/u012762410/article/details/127177181)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Semi-Supervised Classification with Graph Convolutional Networks](https://blog.csdn.net/m0_37924639/article/details/124884547)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值