1、作用
因子分析是基于降维的思想,在尽可能不损失或者少损失原始数据信息的情况下,将错综复杂的众多变量聚合成少数几个独立的公共因子,这几个公共因子可以反映原来众多变量的主要信息,在减少变量个数的同时,又反映了变量之间的内在联系。通常因子分析有三种作用:一是用于因子降维,二是计算因子权重,三是计算加权计算因子汇总综合得分。
2、输入输出描述
输入:2个或两个以上的定量变量(假设为N个变量)。
输出:最低可降维成1维(一个变量,一般用于综合评价),最多可降维成N个变量(一般用于数据脱敏),同时可以获取降维后各个变量的组成权重,用于代表原先变量的数据保留情况。
3、案例示例
根据该地区2021年的生产总值、人均可支配收入等多个指标,量化评估多个省市地区的经济发展水平排名或者各指标的权重。
4、案例数据
因子分析数据
5、案例操作
Step1:新建项目;
Step2:上传数据;
Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;
step4:选择【因子分析】;
step5:查看对应的数据数据格式,【因子分析】要求输入数据为放入 [定量] 自变量X(变量数≥2)。
step6:选择主成分个数、因子旋转方式(注意:在因子分析中倾向于描述原始变量之间的相关关系,所以一般情况下在因子分析选取的主成分个数也就是自变量X个数,而特征根选择则是根据设定的阈值为界限,以大于该界限对应的主成分个数作为选取的主成分个数,默认为1。)
step7:点击【开始分析】,完成全部操作。
6、输出结果
输出结果1:KMO检验和Bartlett的检验
*p<0.05,**p<0.01,***p<0.001
图表说明:KMO检验的结果显示,K