深入浅出详解因子分析,附案例教学(全)

因子分析是一种降维方法,通过整合多个变量为少数因子,保持数据信息并揭示变量间关系。本文详细讲解因子分析的作用、输入输出、案例操作及结果解读,包括KMO检验、Bartlett检验、因子载荷矩阵等,适用于数据分析和问卷分析,有助于理解变量间复杂关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、作用

因子分析是基于降维的思想,在尽可能不损失或者少损失原始数据信息的情况下,将错综复杂的众多变量聚合成少数几个独立的公共因子,这几个公共因子可以反映原来众多变量的主要信息,在减少变量个数的同时,又反映了变量之间的内在联系。通常因子分析有三种作用:一是用于因子降维,二是计算因子权重,三是计算加权计算因子汇总综合得分。

2、输入输出描述

输入:2个或两个以上的定量变量(假设为N个变量)。
输出:最低可降维成1维(一个变量,一般用于综合评价),最多可降维成N个变量(一般用于数据脱敏),同时可以获取降维后各个变量的组成权重,用于代表原先变量的数据保留情况。

3、案例示例

根据该地区2021年的生产总值、人均可支配收入等多个指标,量化评估多个省市地区的经济发展水平排名或者各指标的权重。

4、案例数据

因子分析数据

5、案例操作

Step1:新建项目;
Step2:上传数据;
Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;

step4:选择【因子分析】;
step5:查看对应的数据数据格式,【因子分析】要求输入数据为放入 [定量] 自变量X(变量数≥2)。
step6:选择主成分个数、因子旋转方式(注意:在因子分析中倾向于描述原始变量之间的相关关系,所以一般情况下在因子分析选取的主成分个数也就是自变量X个数,而特征根选择则是根据设定的阈值为界限,以大于该界限对应的主成分个数作为选取的主成分个数,默认为1。)
step7:点击【开始分析】,完成全部操作。

6、输出结果

输出结果1:KMO检验和Bartlett的检验

*p<0.05,**p<0.01,***p<0.001
图表说明:KMO检验的结果显示,K

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值