数据转换函数对比:map、apply、applymap:
- 1、map:只用于Series,实现每个值->值的映射;
- 2、apply:用于Series实现每个值的处理,用于Dataframe实现某个轴的Series的处理;
- 3、applymap:只能用于DataFrame,用于处理该DataFrame的每个元素;
1. map用于Series值的转换
实例:将股票代码英文转换成中文名字
Series.map(dict) or Series.map(function)均可
import pandas as pd
stocks = pd.read_excel('./datas/stocks/互联网公司股票.xlsx')
stocks.head()
stocks["公司"].unique()
# 公司股票代码到中文的映射,注意这里是小写
dict_company_names = {
"bidu": "百度",
"baba": "阿里巴巴",
"iq": "爱奇艺",
"jd": "京东"
}
方法1:Series.map(dict)
stocks["公司中文1"] = stocks["公司"].str.lower().map(dict_company_names)
方法2:Series.map(function)
function的参数是Series的每个元素的值
stocks["公司中文2"] = stocks["公司"].map(lambda x : dict_company_names[x.lower()])
stocks.head()
2. apply用于Series和DataFrame的转换
- Series.apply(function), 函数的参数是每个值
- DataFrame.apply(function), 函数的参数是Series
- (1)Series.apply(function)
function的参数是Series的每个值
stocks["公司中文3"] = stocks["公司"].apply(
lambda x : dict_company_names[x.lower()])
- (2)DataFrame.apply(function)
function的参数是对应轴的Series
stocks["公司中文4"] = stocks.apply(
lambda x : dict_company_names[x["公司"].lower()],
axis=1)
注意:
(1)apply是在stocks这个DataFrame上调用;
(2)lambda x的x是一个Series,因为指定了axis=1所以Seires的key是列名,可以用x[‘公司’]获取
3. applymap用于DataFrame所有值的转换
sub_df = stocks[['收盘', '开盘', '高', '低', '交易量']]#获取这些列的数据
# 将这些数字取整数,应用于所有元素,使其每个系列的值都为整数
sub_df.applymap(lambda x : int(x))
# 直接修改原df的这几列
stocks.loc[:, ['收盘', '开盘', '高', '低', '交易量']] = sub_df.applymap(lambda x : int(x))