13 - 岛屿问题

文章介绍了使用深度优先搜索(DFS)解决与岛屿相关的三个问题:1)计算岛屿的周长,通过遍历网格和处理相邻陆地来求解;2)找出网格中岛屿的数量,遇到陆地时递归标注避免重复计数;3)计算最大岛屿的面积,同样通过DFS遍历并更新最大面积。
摘要由CSDN通过智能技术生成


我们所熟悉的 DFS(深度优先搜索)问题通常是在树或者图结构上进行的。而这篇博客的这三道题是在「网格」结构中进行的DFS。

1. 岛屿的周长

给定一个 row x col 的二维网格地图 grid ,其中:grid[i][j] = 1 表示陆地, grid[i][j] = 0 表示水域。网格中的格子 水平和垂直 方向相连(对角线方向不相连)。整个网格被水完全包围,但其中恰好有一个岛屿(或者说,一个或多个表示陆地的格子相连组成的岛屿)。岛屿中没有“湖”(“湖” 指水域在岛屿内部且不和岛屿周围的水相连)。格子是边长为 1 的正方形。网格为长方形,且宽度和高度均不超过 100 。计算这个岛屿的周长。
在这里插入图片描述
思路:一块土地原则上会带来 4 个周长,但岛上的土地存在接壤,每一条接壤,会减掉 2 个边长。所以,总周长 = 4 * 土地个数 - 2 * 接壤边的条数。遍历矩阵,遍历到土地,就 num++,如果它的左/上边也是土地,则 cover++,遍历结束后代入公式。

class Solution {
public:
    int islandPerimeter(vector<vector<int>>& grid) {
        int result = 0;
        int num = 0;
        int cover = 0;
        for(int i = 0; i < grid.size(); ++i){
            for(int j = 0; j < grid[0].size(); ++j){
                if(grid[i][j]){
                    num++;
                    if(i - 1 >= 0 && grid[i - 1][j] == 1) cover++;
                    if(j - 1 >= 0 && grid[i][j - 1] == 1) cover++;
                }
            }
        }
        result = num * 4 - cover * 2;
        return result;
    }
};

2. 岛屿的数量

给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。此外,你可以假设该网格的四条边均被水包围。

思路:遍历二维数组,遇到1则将岛屿数量加一并进入infect函数,将所以相连的1都标注为2,这样就可以避免重复计数。

class Solution {
public:
    int numIslands(vector<vector<char>>& grid) {
        int result = 0;
        // 遍历岛这个二维数组,如果当前数为1,则进入感染函数并将岛个数+1
        for(int i = 0; i < grid.size(); ++i){
            for(int j = 0; j < grid[0].size(); ++j){
                if(grid[i][j] == '1'){
                    result++;
                    infect(grid, i, j);
                }
            }
        }
        return result;
    }
private:
	//递归标注的过程,它会将所有相连的1都标注成2。这样就避免了遍历过程中的重复计数的情况,
	//一个岛所有的1都变成了2后,遍历的时候就不会重复遍历了。
    void infect(vector<vector<char>>& grid, int i, int j){
        if(i < 0 || i >= grid.size() || j < 0 || j >= grid[0].size() || grid[i][j] != '1')  return;
        grid[i][j] = '2';
        infect(grid, i + 1, j);
        infect(grid, i - 1, j);
        infect(grid, i, j - 1);
        infect(grid, i, j + 1);
    }
};

3. 岛屿的最大面积

给你一个大小为 m x n 的二进制矩阵 grid 。岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。岛屿的面积是岛上值为 1 的单元格的数目。计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0 。

这道题的思路和求岛屿数量的思路一样,只是加了最大面积的判断。

class Solution {
public:
    int maxAreaOfIsland(vector<vector<int>>& grid) {
        for(int i = 0; i < grid.size(); ++i){
            for(int j = 0; j < grid[0].size(); ++j){
                if(grid[i][j] == 1){
                    area = 0;
                    infect(grid, i, j);
                    if(maxArea < area){
                        maxArea = area;
                    }
                }
            }
        }
        return maxArea;
    }
private:
    int maxArea = 0;
    int area = 0;
    void infect(vector<vector<int>>& grid, int i, int j){
        if(i < 0 || i >= grid.size() || j < 0 || j >= grid[0].size() || grid[i][j] != 1) return;
        area++;
        grid[i][j] = 2;
        infect(grid, i + 1, j);
        infect(grid, i - 1, j);
        infect(grid, i, j - 1);
        infect(grid, i, j + 1);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值