有环图的判定
次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4
5 6 0 0
8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0
3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1
Sample Output
Yes
Yes
No
解析:注意该题不仅需要判断是否有环,还需要判断图是否连通
#include<iostream>
#include<string.h>
#include<set>
#include<map>
#define N 100100
#include<algorithm>
using namespace std;
int bin[N];
int mem[N];
int findd(int x){//查找根节点
int next=x;
while(bin[next]!=next)
next=bin[next];
return next;
}
void merge(int x,int y){//合并
int fx,fy;
fy=findd(y);
fx=findd(x);
if(fx!=fy)
bin[fx]=fy;
}
int main(){
int n,m;
while(scanf("%d%d",&m,&n)){
memset(mem,1,sizeof(mem));
int flag=1;
for( int i=1;i<=100000;i++){//初始化
bin[i]=i;
}
if(m!=-1&&n!=-1){
if(m==0&&n==0){
cout<<"Yes"<<endl;
continue;
}
merge(m,n);
mem[m]=0;
mem[n]=0;
while(scanf("%d%d",&m,&n)){
if(m==0&&n==0) break;
if(findd(m)==findd(n)){
flag=0;
}
else{
merge(m,n);
mem[m]=0;
mem[n]=0;
}
}
}else break;
int count=0;
for( int i=1;i<=100000;i++){//数图中共包含几个祖宗节点就有几棵树
if(mem[i]==0&&bin[i]==i)
count++;
}
if(flag&&count==1) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
}