网格交易策略

网格交易是一种非常稳定的仓位管理策略,理论上胜率可以达到 100%。

策略思想:以相对下跌的价格为基准划定若干挡位,随后将每天的价格与前一天进行比较,根据挡位变化进行补仓或减仓。

【投资标的】

  • 处于震荡市(价格整体在一个区间内反复波动)
  • 价格波动幅度足够大(交易有成本,波动幅度太小,获得的收益将非常有限)
  • 估值较低(因为无法 100% 准确的判断出震荡市,一旦价格突然单边下跌,很容易被套牢。选择估值较低的标的会相对安全,可以一定程度预防)

【初始仓位】

  • 取值范围在 0% 到 100% 之间,根据过去半年的价格区间设置
  • 预估基准价格处在中间位,因此选择 50%
  • 预估基准价格处在相对低位,向上波动的空间比较大,更适合重仓进场
  • 基准价格处在相对高位,向下波动的空间比较大,更适合轻仓进场

【网格总数】影响每次调仓的规模

  • 网格交易常用是 10 个挡位
  • 在网格交易策略中,有几个挡位,就要将仓位划分成多少份。价格每变化一挡,就调整一份仓位
  • 对个人而言,账户资金并不多,不建议设定太多挡位,很可能买不起 1 手订单
  • 对大户而言,可以设置为 20,随着价格变化,一共有 20 种不同的仓位选择,调仓非常精细

【网格间距】影响交易频率

  • 同样的价格波动,放在更小的间距中,交易会更加频繁。
  • 过大的挡位间距,会导致错过一些交易机会。
  • 但间距并不是越小越好。
  • 网格总数相同时,间距越小,意味着价格越容易超出网格边界,超出边界的部分同样无法交易;反之,间距越大,网格总宽度越大,价格更容易在网格内部运行。

一个合适的挡位间距,是网格交易调参时最关键的参数。

通常是过去半年的最大价格-最小价格,再除以网格总数,推测未来一段时间的波动幅度大致如此。

比如最大价格5,最小价格4,波动=5-4=1/10档=0.1。

### 网格交易策略 Python 源码实现 #### 设置中枢价格并构建网格系统 为了实施网格交易策略,首先需要定义中枢价格,并基于此创建多头和空头方向上的网格结构。这涉及到设定网格的数量、每个网格的价格差以及相应的仓位大小。 ```python import numpy as np # 定义参数 GRID_AMOUNT = 10 # 网格数量 INITIAL_PRICE = 100.0 # 中枢价格 POSITION_SIZE = 1 # 单次买入/卖出的手数 # 计算多头每格价格变化幅度 grid_region_long = [0.005] * GRID_AMOUNT # 多头每格价格跌幅(网格密度)[^1] # 构建网格列表 prices_long = [(INITIAL_PRICE - i * INITIAL_PRICE * grid_region_long[i]) for i in range(GRID_AMOUNT)] positions_long = [POSITION_SIZE] * GRID_AMOUNT ``` #### 执行买卖操作逻辑 当市场价格触及预设的某个网格价位时,则按照预先配置好的规则执行买进或卖出动作。这里展示了一个简化版的例子来说明如何根据当前市价判断是否应该下单: ```python def check_and_trade(current_price, prices, positions): """检查当前价格是否触碰到了任何网格位置,并据此决定是否进行交易""" trades = [] for idx, price_level in enumerate(prices): if current_price >= price_level and positions[idx] > 0: # 如果达到或多穿过多头网格水平线则卖出 trades.append(('sell', positions[idx])) elif current_price <= price_level and positions[idx] < 0: # 如果跌至或跌破空头网格水平线则买入 trades.append(('buy', abs(positions[idx]))) return trades ``` #### 主循环模拟市场变动过程 最后通过一个简单的主程序框架来进行测试,模拟不同时间点下的市场报价情况,并调用上述函数完成实际的订单处理流程。 ```python if __name__ == "__main__": import random # 初始化变量 market_prices = [] # 存储历史行情数据序列 all_trades = [] # 收集所有的成交记录 # 假定一段时间内的随机波动范围 time_steps = 100 volatility = 0.02 # 波动率 initial_market_price = INITIAL_PRICE for t in range(time_steps): # 更新最新时刻的市场价格(此处采用简单随机游走模型) next_move = (random.random() - 0.5) * volatility * initial_market_price new_market_price = max(min(initial_market_price + next_move, max(prices_long)), min(prices_long)) # 将新产生的价格加入到历史序列中去 market_prices.append(new_market_price) # 对照现有网格体系评估是否有符合条件的新单可下 executed_orders = check_and_trade(new_market_price, prices_long, positions_long) # 添加这些已发生的交易行为到总的清单里面保存起来 all_trades.extend(executed_orders) # 输出部分信息供观察调试用途 print(f"Time Step {t}: Market Price={new_market_price:.2f}, Trades Executed={len(executed_orders)}") ``` 这段代码提供了一种基础形式的网格交易算法实现方式,可以根据具体需求调整各个组件的具体细节以适应不同的应用场景[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值