【现代信号处理】17 - 基于滤波器组的谱估计

基于滤波器组的谱估计–Filter-Bank Method

1. 滤波器组

  首先我们介绍一下,什么是滤波器组

1.1 分段处理谱估计问题

  通常随机信号是无限长的,连续的。但是实际信号的经过采样之后的,就变成了离散的,有限长度的。

  现在我们想用有限长的数据估计随机信号的功率谱

Z ( t ) ⇒ { Z ( k ) } k = 1 N − 1 Z(t) \Rightarrow \{ Z(k)\}_{k=1}^{N-1} Z(t){Z(k)}k=1N1

  我们实际是希望得到每一个频点上的功率谱的分量。但是我们只有有限长的数据,这是不可能实现的事情。

  我们只能降低要求。就是不求全部频率点的功率谱,而是划分一个小区间,就用有限的数据,求这一个小区间的功率谱的和

在这里插入图片描述

  现在问题就变成了。我们的数据经过采样之后,就划分出了一段工作频带,频带取决于采样率。采样频率的倒数,就是带宽。然后将频宽归一化到(-pi,pi)

在这里插入图片描述

  在这个频带内可以划分出很多的小段。只要划分出的小段的数量,比采样的数据数目少即可。

1.2 滤波器作为谱估计的手段

  为了能够获得这个小段,我们只需要让信号通过一个滤波器即可,滤波器的通带就是这个小段

在这里插入图片描述

  只要我们滤波器是理想的,我们就能够得到这一小段内功率的和

  因此滤波器就变成了解决谱分析问题的工具

1.3 滤波器与滤波器组

  为什么会有滤波器组的概念呢,因为我们一个滤波器只能得到一个频点周围的功率的和。

  如果我们想看很多频点周围的功率的和,我们就要让滤波器滑动起来,就有了滤波器组的概念

在这里插入图片描述

  我们得到了多个频点的功率和之后,就能够得到一个相对比较准确的谱估计了

2. 滤波器组与周期图之间的关系

  我们用滤波器组的观点来重新看待周期图

S ^ Z ( ω ) = 1 N ∣ ∑ k = 1 N − 1 Z ( k ) e x p ( − j ω k ) ∣ 2 \hat S_Z(\omega) = \frac{1}{N} |\sum_{k=1}^{N-1}Z(k)exp(-j\omega k)|^2 S^Z(ω)=N1k=1N1Z(k)exp(jωk)2

  改变一下形式,在模里面加一个相位,因为相位改变对模没有影响,所以变换前后值不变

S ^ Z ( ω ) = 1 N ∣ ∑ k = 1 N − 1 Z ( k ) e x p ( j ω ( N − k ) ) ∣ 2 \hat S_Z(\omega) = \frac{1}{N} |\sum_{k=1}^{N-1}Z(k)exp(j\omega (N-k))|^2 S^Z(ω)=N1k=1N1Z(k)exp(jω(Nk))2
  这样做是为了构造卷积的样子

Let  h k = e ( j ω k ) k = 0 , 1 , . . . , N − 1 \text{Let } h_k = e(j\omega k) \\ k = 0,1,...,N-1 Let hk=e(jωk)k=0,1,...,N1

Then  S ^ Z ( ω ) = 1 N ∣ ∑ k = 0 N − 1 Z ( k ) h N − k ( ω ) ∣ 2 \text{Then } \hat S_Z(\omega) = \frac{1}{N} |\sum_{k=0}^{N-1}Z(k)h_{N-k}(\omega)|^2 \\ Then S^Z(ω)=N1k=0N1Z(k)hNk(ω)2

  再变形下,让式子更加接近卷积

= 1 N ∣ ∑ k = 0 ∞ Z ( k ) h N − k ( ω ) ∣ 2 h k ( ω ) = { e x p ( j ω k ) k=1,...,N-1  0 others  = \frac{1}{N} |\sum_{k=0}^{\infty}Z(k)h_{N-k}(\omega)|^2 \\ h_k(\omega) = \begin{cases} exp(j \omega k) &\text{k=1,...,N-1 } \\ 0 &\text{others } \end{cases} =N1k=0Z(k)hNk(ω)2hk(ω)={exp(jωk)0k=1,...,N-1 others 

  然后我们计算下滤波器的频率响应

H ( ω ′ ) = ∑ k = 1 N − 1 h k ( ω ′ ) e x p ( − j ω ′ k ) = ∑ k = 1 N − 1 e x p ( j ( ω − ω ′ ) k ) H(\omega') = \sum_{k=1}^{N-1} h_k(\omega') exp(-j \omega'k) \\ = \sum_{k=1}^{N-1} exp(j(\omega- \omega')k) H(ω)=k=1N1hk(ω)exp(jωk)=k=1N1exp(j(ωω)k)

∣ H ( ω ′ ) ∣ = s i n ( N 2 ( ω − ω ′ ) ) s i n ( 1 2 ( ω − ω ′ ) ) |H(\omega')| = \frac{sin(\frac{N}{2}(\omega - \omega'))}{sin(\frac{1}{2}(\omega - \omega'))} H(ω)=sin(21(ωω))sin(2N(ωω))

在这里插入图片描述

  上图是ω为0的时候的频率响应。如果要滑动的话,就是让这个图沿着ω轴滑动即可。我们从滤波器角度审视周期图的话,发现因为主瓣模糊和旁瓣泄漏,这个滤波器其实并不是非常好。

  我们可以发现,周期图就是在用一个滤波器在频率轴进行滑动,但是滤波器的质量却离理想的差很远。

  但是周期图的滤波器效果不好,只是因为我们没有对这个滤波器进行单独的设计。我们只是根据功率谱的定义式,然后通过离散化的方式得到了周期图。

  下面我们就要对通过对滤波器进行单独设计,然后得到更好的谱估计。

3. 数据无关的滤波器组方法–Slepian 滤波器

3.1 设计目标

  也就是我们要找到一组hk,我们对他的频响有要求。我们先在零频上找这个滤波器,然后可以通过修改相位的方法进行滑动,找到滤波器组。

  首先,我们要求在整个工作频带内的通过能力是归一化的

{ h k } k = 0 N − 1 → H ( ω ) 1 2 π ∫ − π π ∣ H ( ω ) ∣ 2 d ω = 1 \{ h_k \}_{k=0}^{N-1} \rightarrow H(\omega) \\ \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(\omega)|^2 d\omega = 1 {hk}k=0N1H(ω)2π1ππH(ω)2dω=1

  并且我们要求在我们关注的频带内的通过能力是最大的。因为这个滤波器是放在零频上的,因此要求零频附近的响应能力最大

m a x H ∫ − β π β π ∣ H ( ω ) ∣ 2 d ω max_H \int_{-\beta \pi}^{\beta \pi} |H(\omega)|^2 d\omega maxHβπβπH(ω)2dω

  相当于,我们做最优化,在全局范围内做了一个约束,然后在局部范围内做了目标函数

3.2 计算

3.2.1 约束条件的计算

H ( ω ) = ∑ k = 0 N − 1 h k e x p ( − j ω k ) = a ( ω ) H ∗ h h = ( h 0 , . . . , h N − 1 ) a ( ω ) = ( 1 , e x p ( j ω ) , . . . , e x p ( j ( N − 1 ) ω ) H(\omega) = \sum_{k=0}^{N-1} h_k exp(-j\omega k) = a(\omega)^H*h \\ h = (h_0,...,h_{N-1}) \\ a(\omega) = (1,exp(j\omega),...,exp(j(N-1)\omega) H(ω)=k=0N1hkexp(jωk)=a(ω)Hhh=(h0,...,hN1)a(ω)=(1,exp(jω),...,exp(j(N1)ω)

  H是共轭转置的意思。h和a都是列向量。

1 2 π ∫ − π π ∣ H ( ω ) ∣ 2 d ω = 1 2 π ∫ − π π ( h H a ( ω ) a ( ω ) H h ) d ω = h H ( 1 2 π ∫ − π π a ( ω ) a ( ω ) H d ω ) h \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(\omega)|^2 d\omega \\ = \frac{1}{2\pi} \int_{-\pi}^{\pi} (h^H a(\omega)a(\omega)^H h) d\omega \\ = h^H(\frac{1}{2\pi}\int_{-\pi}^{\pi}a(\omega)a(\omega)^H d\omega) h 2π1ππH(ω)2dω=2π1ππ(hHa(ω)a(ω)Hh)dω=hH(2π1ππa(ω)a(ω)Hdω)h

  被积函数是一列乘一行,是一个矩阵

Let  A ( ω ) = a ( ω ) a H ( ω ) A k n ( ω ) = e x p ( j ( k − n ) ω ) \text{Let } A(\omega) = a(\omega) a^H(\omega) \\ A_{kn} (\omega)= exp(j(k-n) \omega) Let A(ω)=a(ω)aH(ω)Akn(ω)=exp(j(kn)ω)

  同时

∫ − π π A k n ( ω ) ω = δ k n \int_{-\pi}^{\pi} A_{kn} (\omega) \omega = \delta_{kn} ππAkn(ω)ω=δkn

  因此可知

A ( ω ) = I A(\omega) = I A(ω)=I

  所以

1 2 π ∫ − π π ∣ H ( ω ) ∣ 2 d ω = h H ( 1 2 π ∫ − π π a ( ω ) a ( ω ) H d ω ) h = h H ( 1 2 π ∫ − π π A ( ω ) d ω ) h = h H h = ∣ ∣ h ∣ ∣ 2 = 1 \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(\omega)|^2 d\omega \\ = h^H(\frac{1}{2\pi}\int_{-\pi}^{\pi}a(\omega)a(\omega)^H d\omega) h \\ = h^H(\frac{1}{2\pi}\int_{-\pi}^{\pi}A(\omega) d\omega) h \\ = h^H h = ||h||^2 = 1 2π1ππH(ω)2dω=hH(2π1ππa(ω)a(ω)Hdω)h=hH(2π1ππA(ω)dω)h=hHh=h2=1

3.2.2 优化目标的计算

1 2 π ∫ − β π β π ∣ H ( ω ) ∣ 2 d ω \frac{1}{2\pi} \int_{-\beta \pi}^{\beta \pi} |H(\omega)|^2 d\omega 2π1βπβπH(ω)2dω

  β限制的是滤波器的通带宽度。β应该是个很小的数,但是不能无限的小下去。2π的区间里面分段数不能够大于N

β < < 1 2 π 2 β π ≤ N ⇒ β ≥ 1 N \beta << 1 \\ \frac{2 \pi}{2 \beta \pi} \leq N \\ \Rightarrow \beta \geq \frac{1}{N} β<<12βπ2πNβN1

  来看约束条件

1 2 π ∫ − β π β π ∣ H ( ω ) ∣ 2 d ω = h H ( 1 2 π ∫ − β π β π A ( ω ) d ω ) h \frac{1}{2\pi} \int_{-\beta \pi}^{\beta \pi} |H(\omega)|^2 d\omega \\ = h^H(\frac{1}{2\pi} \int_{-\beta \pi}^{\beta \pi} A(\omega) d\omega)h 2π1βπβπH(ω)2dω=hH(2π1βπβπA(ω)dω)h
  我们假定

Let  Γ = 1 2 π ∫ − β π β π A ( ω ) d ω \text{Let }\Gamma = \frac{1}{2\pi} \int_{-\beta \pi}^{\beta \pi} A(\omega) d\omega Let Γ=2π1βπβπA(ω)dω

Γ k n = 1 2 π ∫ − β π β π A k n ( ω ) d ω = 1 2 π ∫ − β π β π e x p ( j ( k − n ) ω ) d ω \Gamma_{kn} = \frac{1}{2\pi} \int_{-\beta \pi}^{\beta \pi} A_{kn}(\omega) d\omega \\ = \frac{1}{2\pi} \int_{-\beta \pi}^{\beta \pi} exp(j(k-n)\omega) d\omega Γkn=2π1βπβπAkn(ω)dω=2π1βπβπexp(j(kn)ω)dω

  因为积分区间是对称的,exp中虚部的sin是个奇函数,因此在积分中是0,这个积分只会剩下cos部分

  因此

Γ k n = 1 2 π ∫ − β π β π c o s ( ( k − n ) ω ) d ω = 1 2 π s i n ( ( k − n ) ω ) k − n ∣ − β π β π = s i n ( ( k − n ) β π ) ( k − n ) π \Gamma_{kn} = \frac{1}{2\pi} \int_{-\beta \pi}^{\beta \pi} cos((k-n)\omega) d\omega \\ = \frac{1}{2\pi} \frac{sin((k-n)\omega)}{k-n} |_{-\beta \pi}^{\beta \pi} \\ = \frac{sin((k-n)\beta \pi)}{(k-n)\pi} Γkn=2π1βπβπcos((kn)ω)dω=2π1knsin((kn)ω)βπβπ=(kn)πsin((kn)βπ)

  分析优化条件

m a x h h H Γ h s . t . h H h = 1 max_h h^H \Gamma h \quad s.t.h^Hh=1 maxhhHΓhs.t.hHh=1
  我们用拉格朗日数乘法进行求解

L ( h , λ ) = h H Γ h + λ ( h H h − 1 ) L(h,\lambda) = h^H \Gamma h + \lambda(h^Hh-1) L(h,λ)=hHΓh+λ(hHh1)

  注意,γ是个对称矩阵

Γ H = Γ \Gamma^H = \Gamma ΓH=Γ

  求导

∇ L ( h , λ ) = 2 Γ h − 2 λ h = 0 \nabla L(h,\lambda) = 2 \Gamma h- 2 \lambda h = 0\\ L(h,λ)=2Γh2λh=0

  可得

Γ h = λ h \Gamma h = \lambda h Γh=λh

  说明h是γ矩阵的特征向量,是特征值最大的那个的特征矢量

3.2.3 对γ矩阵的分析

Γ = 1 2 π ∫ − β π β π A ( ω ) d ω ≈ 1 2 π ∑ k = − L L a ( 2 π N k ) a H ( 2 π N k ) ∗ 2 π N \Gamma = \frac{1}{2\pi} \int_{-\beta \pi}^{\beta \pi} A(\omega) d\omega \\ \approx \frac{1}{2\pi} \sum_{k=-L}^L a(\frac{2 \pi}{N}k)a^H(\frac{2 \pi}{N}k)*\frac{2\pi}{N} Γ=2π1βπβπA(ω)dω2π1k=LLa(N2πk)aH(N2πk)N2π

  其中

L = β π 2 π / N = β N 2 L = \frac{\beta \pi}{2 \pi/N} =\frac{\beta N}{2} L=2π/Nβπ=2βN

  这个近似如果要做的好的话,βN要充分大,也就是通带β要尽可能宽,但是这样就会损失分辨率

β N > > 1 β > > 1 N \beta N >>1 \\ \beta >> \frac{1}{N} βN>>1β>>N1

  因此这个近似可能不准

Γ ≈ 1 2 π ∑ k = − L L a ( 2 π N k ) a H ( 2 π N k ) ∗ 2 π N = 1 N ∑ k = − L L a ( 2 π N k ) a H ( 2 π N k ) = Γ ~ \Gamma \approx \frac{1}{2\pi} \sum_{k=-L}^L a(\frac{2 \pi}{N}k)a^H(\frac{2 \pi}{N}k)*\frac{2\pi}{N} \\ = \frac{1}{N} \sum_{k=-L}^L a(\frac{2 \pi}{N}k)a^H(\frac{2 \pi}{N}k) = \widetilde \Gamma\\ Γ2π1k=LLa(N2πk)aH(N2πk)N2π=N1k=LLa(N2πk)aH(N2πk)=Γ

  我们发现这是一个2L+1个矩阵相加得到的式子。因为每个矩阵都是一列乘一行,是个秩一矩阵。2L+1个秩一矩阵相加,秩最多就是2L+1

r ( A + B ) ≤ r ( A ) + r ( B ) r(A+B) \leq r(A) +r(B) r(A+B)r(A)+r(B)

a ( 2 π k N ) = ( 1 , e x p ( j 2 k π N ) , . . . , e x p ( j N − 1 N 2 k π ) ) a(\frac{2\pi k}{N}) = (1,exp(j\frac{2k\pi}{N}),...,exp(j\frac{N-1}{N}2k\pi)) a(N2πk)=(1,exp(jN2kπ),...,exp(jNN12kπ))
  我们来看看a的内积

a H ( 2 π k 1 N ) a ( 2 π k 2 N ) = { 0 k 1 = k 2 N k 1 = k 2 a^H(\frac{2\pi k_1}{N})a(\frac{2\pi k_2}{N}) = \begin{cases} 0 & k_1 \cancel = k_2 \\ N &k_1 = k_2 \end{cases} aH(N2πk1)a(N2πk2)={0Nk1= k2k1=k2

  我们发现这是个正交的向量,并且,如果我们把N放到a里面,这还是个规范的向量

1 N a H ( 2 π k 1 N ) 1 N a ( 2 π k 2 N ) = { 0 k 1 = k 2 1 k 1 = k 2 \frac{1}{\sqrt{N}}a^H(\frac{2\pi k_1}{N})\frac{1}{\sqrt{N}}a(\frac{2\pi k_2}{N}) = \begin{cases} 0 & k_1 \cancel = k_2 \\ 1 &k_1 = k_2 \end{cases} N 1aH(N2πk1)N 1a(N2πk2)={01k1= k2k1=k2

  继续分析γ矩阵

Γ ~ = 1 N ∑ k = − L L a ( 2 π N k ) a H ( 2 π N k ) \widetilde \Gamma=\frac{1}{N} \sum_{k=-L}^L a(\frac{2 \pi}{N}k)a^H(\frac{2 \pi}{N}k) \\ Γ =N1k=LLa(N2πk)aH(N2πk)

  假设有这样的k
k ∈ [ − L , L ] k \in [-L,L] k[L,L]

Γ ~ ∗ a ( 2 π k N ) = ( 1 N ∑ l = − L L a ( 2 π N l ) a H ( 2 π N l ) ) ∗ a ( 2 π k N ) = 1 N ∑ l = − L L a ( 2 π N l ) ( a H ( 2 π N l ) ∗ a ( 2 π k N ) ) = 1 N ∑ l = − L L a ( 2 π N l ) N ∗ δ k l = a ( 2 π N k ) \widetilde \Gamma * a(\frac{2 \pi k}{N}) =(\frac{1}{N} \sum_{l=-L}^L a(\frac{2 \pi}{N}l)a^H(\frac{2 \pi}{N}l))* a(\frac{2 \pi k}{N}) \\ = \frac{1}{N} \sum_{l=-L}^L a(\frac{2 \pi}{N}l)(a^H(\frac{2 \pi}{N}l)* a(\frac{2 \pi k}{N})) \\ = \frac{1}{N} \sum_{l=-L}^L a(\frac{2 \pi}{N}l)N*\delta_{kl} = a(\frac{2 \pi}{N}k) Γ a(N2πk)=(N1l=LLa(N2πl)aH(N2πl))a(N2πk)=N1l=LLa(N2πl)(aH(N2πl)a(N2πk))=N1l=LLa(N2πl)Nδkl=a(N2πk)

  可得

Γ ~ ∗ a ( 2 π k N ) = a ( 2 π N k ) \widetilde \Gamma * a(\frac{2 \pi k}{N}) = a(\frac{2 \pi}{N}k) Γ a(N2πk)=a(N2πk)

  我们就得到了λ为1时候的特征矢量。并且这样的特征矢量有2L+1个,因此1是2L+1重的特征值。并且这些特征矢量彼此正交

a ( 2 π k N ) a(\frac{2 \pi k}{N}) a(N2πk)

  这里近似的有些厉害了,因为得到的特征矢量是复三角函数,但是实际上并不是

  γ矩阵的特征值也有特点,前面的一些非常大,后面的一些几乎为0,这是因为γ矩阵的秩最大为2l+1

在这里插入图片描述

3.2.4 slepian window

  这样设计得到的滤波器叫做slepian滤波器

4. Multitaper

4.1 周期图谱中的trade off

  在周期图分析中,我们提到过Bias Variance Trade off,就是我们扩大数据量之后,对方差校正没有影响,对均值校正有影响,为了降低方差,我们只能把数据分成不同的段,求功率谱,然后取平均,这样才能得到方差比较小的功率谱估计,可是这样的话,得到的数据均值偏差就会变大,就有了Bias Variance Trade off

4.2 slepian window与周期图谱估计

4.2.1 Multitaper

  我们可以通过多窗口的方法来解决周期图中的trade-off问题。这种方法叫做multiple windows(Multitaper)

  也就是,我们对同一组数据,使用不同的窗进行谱分析,因为窗是我们特别设计的,所以得到的谱分析结果是不相关的。然后谱分析结果取均值,就能够降低方差。这样的话,就能够同时优化均值和方差了

  怎么设计这样的窗呢?slepian window就有这样的功能

  我们就用γ矩阵产生的不同滤波器来做这个思路的谱估计

Γ k n = 1 2 π ∫ − β π β π c o s ( ( k − n ) ω ) d ω = 1 2 π s i n ( ( k − n ) ω ) k − n ∣ − β π β π = s i n ( ( k − n ) β π ) ( k − n ) π \Gamma_{kn} = \frac{1}{2\pi} \int_{-\beta \pi}^{\beta \pi} cos((k-n)\omega) d\omega \\ = \frac{1}{2\pi} \frac{sin((k-n)\omega)}{k-n} |_{-\beta \pi}^{\beta \pi} \\ = \frac{sin((k-n)\beta \pi)}{(k-n)\pi} Γkn=2π1βπβπcos((kn)ω)dω=2π1knsin((kn)ω)βπβπ=(kn)πsin((kn)βπ)

  假设γ矩阵有若干个特征值,然后我们就有了新的谱估计结果

Γ h ( k ) = λ k h ( k ) k = 1 , 2 , . . . , L ⇒ S ^ Z = 1 N L ∑ k = 1 L ∣ ∑ n = 0 N − 1 h n ( k ) Z ( n ) e x p ( − j n ω ) ∣ 2 \Gamma h^{(k)} = \lambda_k h^{(k)} \\ k = 1,2,...,L \\ \Rightarrow \hat S_Z = \frac{1}{NL} \sum_{k=1}^L |\sum_{n=0}^{N-1}h_n^{(k)} Z(n) exp(-jn \omega)|^2 Γh(k)=λkh(k)k=1,2,...,LS^Z=NL1k=1Ln=0N1hn(k)Z(n)exp(jnω)2

  这个谱估计,里面是一个周期图,外面是不同滤波器得到结果的均值。周期图里面是加了窗的,就是L个大特征值对应的特征矢量

4.2.2 证明不同滤波器谱分析结果不相关

  因为我们进行Multitaper的谱分析时,必须要证明每个滤波器得到的功率谱估计是不相关的,所以我们在这里证明一下

E ( ∑ n = 0 N − 1 h n ( k 1 ) Z ( n ) ) ( ∑ l = 0 N − 1 h l ( k 2 ) Z ( l ) ‾ ) = ∑ n = 0 N − 1 ∑ l = 0 N − 1 h n ( k 1 ) h l ( k 2 ) ‾ E ( Z ( n ) Z ∗ ( l ) ) = ∑ n = 0 N − 1 ∑ l = 0 N − 1 h n ( k 1 ) h l ( k 2 ) ‾ R Z ( n − l ) = ∑ n = 0 N − 1 ∑ l = 0 N − 1 h n ( k 1 ) h l ( k 2 ) ‾ 1 2 π ∫ − π π S Z ( ω ) e x p ( j ω ( n − l ) ) d ω = 1 2 π ∫ − π π ( ∑ n = 0 N − 1 h n ( k 1 ) e x p ( j ω n ) ) ( ∑ l = 0 N − 1 h l ( k 2 ) ‾ e x p ( − j ω l ) ) S Z ( ω ) d ω E(\sum_{n=0}^{N-1}h_n^{(k_1)}Z(n))(\overline {\sum_{l=0}^{N-1}h_l^{(k_2)}Z(l)}) \\ = \sum_{n=0}^{N-1} \sum_{l=0}^{N-1} h_n^{(k_1)}\overline{h_l^{(k_2)}} E(Z(n)Z^*(l)) \\ = \sum_{n=0}^{N-1} \sum_{l=0}^{N-1} h_n^{(k_1)}\overline{h_l^{(k_2)}} R_Z(n-l) \\ = \sum_{n=0}^{N-1} \sum_{l=0}^{N-1} h_n^{(k_1)}\overline{h_l^{(k_2)}} \frac{1}{2 \pi} \int_{-\pi}^{\pi} S_Z(\omega) exp(j\omega(n-l))d \omega \\ = \frac{1}{2 \pi} \int_{-\pi}^{\pi} (\sum_{n=0}^{N-1}h_n^{(k_1)} exp(j\omega n))(\sum_{l=0}^{N-1} \overline{h_l^{(k_2)}} exp(-j\omega l)) S_Z(\omega) d \omega \\ E(n=0N1hn(k1)Z(n))(l=0N1hl(k2)Z(l))=n=0N1l=0N1hn(k1)hl(k2)E(Z(n)Z(l))=n=0N1l=0N1hn(k1)hl(k2)RZ(nl)=n=0N1l=0N1hn(k1)hl(k2)2π1ππSZ(ω)exp(jω(nl))dω=2π1ππ(n=0N1hn(k1)exp(jωn))(l=0N1hl(k2)exp(jωl))SZ(ω)dω

  我们做一个换元,令-ω = ω,为了凑成傅里叶变换。后面的微元变号,前面的积分换方向会抵消。功率谱密度是平方,正负号不影响。然后就exp里面改变符号即可

= 1 2 π ∫ − π π ( ∑ n = 0 N − 1 h n ( k 1 ) e x p ( − j ω n ) ) ( ∑ l = 0 N − 1 h l ( k 2 ) ‾ e x p ( j ω l ) ) S Z ( ω ) d ω = 1 2 π ∫ − π π H ( k 1 ) ( ω ) H ( k 2 ) ( ω ) ‾ S Z ( ω ) d ω =\frac{1}{2 \pi} \int_{-\pi}^{\pi} (\sum_{n=0}^{N-1}h_n^{(k_1)} exp(-j\omega n))(\sum_{l=0}^{N-1} \overline{h_l^{(k_2)}} exp(j\omega l))S_Z(\omega)d \omega \\ = \frac{1}{2 \pi} \int_{-\pi}^{\pi} H^{(k_1)}(\omega)\overline{H^{(k_2)}(\omega)}S_Z(\omega)d \omega \\ =2π1ππ(n=0N1hn(k1)exp(jωn))(l=0N1hl(k2)exp(jωl))SZ(ω)dω=2π1ππH(k1)(ω)H(k2)(ω)SZ(ω)dω
  因为对功率谱密度加了两个滤波器,两个滤波器都是在零频附近响应比较强,因此,上式可以近似等于在零频附近的能量。

  然后我们假设功率谱密度几乎在零频附近是个常数
≈ 1 2 π ∫ − β π β π H ( k 1 ) ( ω ) H ( k 2 ) ( ω ) ‾ S Z ( ω ) d ω ≈ S Z ( 0 ) 1 2 π ∫ − β π β π H ( k 1 ) ( ω ) H ( k 2 ) ( ω ) ‾ d ω = S Z ( 0 ) 1 2 π ∫ − β π β π ( a H ( ω ) h ( k 1 ) ) ( ( h ( k 2 ) ) T a ( ω ) ‾ ‾ ) d ω = S Z ( 0 ) 2 π ( h ( k 2 ) ) H ( ∫ − β π β π a ( ω ) a H ( ω ) d ω ) h ( k 1 ) = S Z ( 0 ) 2 π ( h ( k 2 ) ) H Γ h ( k 1 ) = 0 ( k 1 = k 2 ) \approx \frac{1}{2 \pi} \int_{-\beta \pi}^{\beta \pi} H^{(k_1)}(\omega)\overline{H^{(k_2)}(\omega)}S_Z(\omega)d \omega \\ \approx S_Z(0)\frac{1}{2 \pi} \int_{-\beta \pi}^{\beta \pi} H^{(k_1)}(\omega)\overline{H^{(k_2)}(\omega)}d \omega \\ = S_Z(0)\frac{1}{2 \pi} \int_{-\beta \pi}^{\beta \pi} (a^H(\omega)h^{(k_1)})(\overline{(h^{(k_2)})^T \overline{a(\omega)}})d\omega \\ = \frac{S_Z(0)}{2\pi} (h^{(k_2)})^H (\int_{-\beta \pi}^{\beta \pi} a(\omega)a^H(\omega)d\omega )h^{(k_1)} \\ = \frac{S_Z(0)}{2\pi} (h^{(k_2)})^H \Gamma h^{(k_1)} =0 (k_1 \cancel = k_2) 2π1βπβπH(k1)(ω)H(k2)(ω)SZ(ω)dωSZ(0)2π1βπβπH(k1)(ω)H(k2)(ω)dω=SZ(0)2π1βπβπ(aH(ω)h(k1))((h(k2))Ta(ω))dω=2πSZ(0)(h(k2))H(βπβπa(ω)aH(ω)dω)h(k1)=2πSZ(0)(h(k2))HΓh(k1)=0(k1= k2)

4.2.3 小结

  其实周期图谱估计也是一种滤波器组方法,只不过周期图中用的滤波器组没有进行优化设计,有主瓣模糊和旁瓣泄漏的问题

  而对滤波器通过约束条件和优化目标的设计,就得到了slepian滤波器组方法

  同时,slepian除了最大的特征值对应的特征向量可用来做滤波器组以外,slepian的其他特征向量也可以用来做滤波器组谱估计,虽然性能差一点。

  但是,值得注意的是,这些滤波器组处理过数据之后,得到的功率谱数据是不相关的。因此,对多个滤波器组得到的谱估计结果进行平均,就可以得到方差更小的功率谱估计结果。

  这种multitaper的方法解决了周期图谱估计中矛盾点。即扩大数据长度对方差的误差减小没有帮助,把数据分段处理,最后加权平均又会影响均值的误差。而使用slepian滤波器组就不用对数据分段,利用不同滤波器组处理同一组数据,然后加权平均,同时兼顾了均值和方差的误差的减小。

5. 数据相关的谱估计方法-Capon Spectrum

5.1 问题引入

  slepian在设计滤波器的时候,是数据独立的。因为约束条件和优化条件都是针对h来的,跟数据域没有关系,因此通过slepian做的滤波器组方法是数据无关的。

  但是,我们希望从数据相关的角度来进行谱估计方法设计。比如机器学习,训练的模型都是数据相关的,用猫的图片进行训练,得到的模型肯定识别不出汽车

  接下来引入一种数据相关的谱分析方法

5.2 约束条件与目标函数

  假设我们有一个滤波器,并且要求这个滤波器在给定频率上的响应是个常数,这里就取1

{ h k } k = 0 N − 1 Given  ω 0 H ( ω 0 ) = 1 \{ h_k\}^{N-1}_{k=0} \\ \text{Given } \omega_0 \\ H(\omega_0) = 1 {hk}k=0N1Given ω0H(ω0)=1

  我们在这个约束的条件下,要求这个滤波器输出的功率最小

m i n h E ∣ h H Z ∣ 2 Z = ( Z ( 0 ) , . . . , Z ( n − 1 ) ) T h = ( h 0 , . . . , h N − 1 ) T min_h E|h^HZ|^2 \\ Z = (Z(0),...,Z(n-1))^T \\ h = (h0,...,h_{N-1})^T minhEhHZ2Z=(Z(0),...,Z(n1))Th=(h0,...,hN1)T

在这里插入图片描述

  相当于我们要求了滤波器在给定频率点上的响应,并且要求这个滤波器在这个频点周围的面积尽可能窄,这样才能有最小的功率输出

m i n h E ∣ h H Z ∣ 2 s . t . a H ( ω ) h = 1 min_h E|h^HZ|^2 \quad s.t. \quad a^H(\omega)h = 1 minhEhHZ2s.t.aH(ω)h=1

5.3 与slepian的对比

  slepian设计滤波器的时候,是要求滤波总的功率谱是一定的,要求经过滤波器在给定频点处的功率最大。说明滤波器在给定频点的地方占据了最大的空间。是约束好整体条件,优化局部。

Slepian m a x h h H Γ h s . t . h H h = 1 1964 Bell \text{Slepian} \\ max_h h^H \Gamma h \quad s.t. \quad h^Hh=1 \\ \text{1964 Bell} SlepianmaxhhHΓhs.t.hHh=11964 Bell

  而这种方法是约束好了局部条件,然后优化全局。就是要求在频点处的响应是确定的,并且要求功率输出最小。
m i n h E ∣ h H Z ∣ 2 s . t . a H ( ω ) h = 1 1969 MIT min_h E|h^HZ|^2 \quad s.t. \quad a^H(\omega)h = 1 \\ \text{1969 MIT} minhEhHZ2s.t.aH(ω)h=11969 MIT

  这种方法在优化里面叫对偶

  MIT的方法在优化中已经用到了数据域,因此是数据相关的。并且约束条件上,还用到了频率,还是频率相关的

  因此这种方法设计的滤波器组,并不是简单的数据滑动,而是在每一个频点上,都是专门设计的滤波器。而slepian是同一个滤波器在不同频点上滑动

  因此MIT的这种方法在所有非参数谱分析中,是最好的

5.4 计算

E ∣ h H Z ∣ 2 = E ( h H Z Z H h ) = h H E ( Z Z H ) h = h H R Z h E|h^H Z|^2 = E(h^H Z Z^H h) \\ = h^H E(Z Z^H) h = h^H R_Z h \\ EhHZ2=E(hHZZHh)=hHE(ZZH)h=hHRZh

  约束条件和优化目标

m i n h E ∣ h H Z ∣ 2 s . t . a H ( ω ) h = 1 min_h E|h^HZ|^2 \quad s.t. \quad a^H(\omega)h = 1 \\ minhEhHZ2s.t.aH(ω)h=1

  拉格朗日数乘法

L ( h , λ ) = 1 2 h H R Z h − λ ( a H ( ω ) h − 1 ) ∇ h L = R Z h − λ a ( ω ) h = λ R Z − 1 a ( ω ) L(h,\lambda)=\frac{1}{2}h^H R_Z h - \lambda(a^H(\omega)h-1) \\ \nabla_h L = R_Zh - \lambda a(\omega) \\ h = \lambda R_Z^{-1}a(\omega) L(h,λ)=21hHRZhλ(aH(ω)h1)hL=RZhλa(ω)h=λRZ1a(ω)

  下面我们就求λ

  代入约束条件
a H ( ω ) h = 1 a^H(\omega)h = 1 aH(ω)h=1

a H ( ω ) λ R Z − 1 a ( ω ) = 1 λ = 1 a H ( ω ) R Z − 1 a ( ω ) a^H(\omega)\lambda R_Z^{-1}a(\omega) = 1 \\ \lambda = \frac{1}{a^H(\omega) R_Z^{-1}a(\omega)} aH(ω)λRZ1a(ω)=1λ=aH(ω)RZ1a(ω)1

  我们就得到了确定频点处的滤波器

h = R Z − 1 a ( ω 0 ) a H ( ω 0 ) R Z − 1 a ( ω 0 ) h = \frac{R_Z^{-1}a(\omega_0)}{a^H(\omega_0) R_Z^{-1}a(\omega_0)} h=aH(ω0)RZ1a(ω0)RZ1a(ω0)

  我们就可以得到新的功率谱估计了

  这个功率谱就是滤波器输出的功率

S Z ( ω 0 ) = h H R Z h = a ( ω 0 ) H R Z − 1 R Z R Z − 1 a ( ω 0 ) ( a H ( ω 0 ) R Z − 1 a ( ω 0 ) ) 2 = a ( ω 0 ) H R Z − 1 a ( ω 0 ) ( a H ( ω 0 ) R Z − 1 a ( ω 0 ) ) 2 = 1 a H ( ω 0 ) R Z − 1 a ( ω 0 ) S_Z(\omega_0) = h^H R_Z h \\ = \frac{a(\omega_0)^HR_Z^{-1} R_ZR_Z^{-1}a(\omega_0) }{(a^H(\omega_0) R_Z^{-1}a(\omega_0))^2} \\ = \frac{a(\omega_0)^HR_Z^{-1} a(\omega_0) }{(a^H(\omega_0) R_Z^{-1}a(\omega_0))^2} \\ = \frac{1 }{a^H(\omega_0) R_Z^{-1}a(\omega_0)} SZ(ω0)=hHRZh=(aH(ω0)RZ1a(ω0))2a(ω0)HRZ1RZRZ1a(ω0)=(aH(ω0)RZ1a(ω0))2a(ω0)HRZ1a(ω0)=aH(ω0)RZ1a(ω0)1

5.5 小结

  这种谱叫做Capon Spectrum。在非参数功率谱估计中做到了极致

  这种方法也叫做MVDR(Minimum Variance Distortionless Response) 最小方差无损响应

  Capon的方法的滤波器谱在频点处是非常尖的

在这里插入图片描述

   取法乎上,得之中。就是对capon最好的描述。因为capon把别人追求的目标函数变成了约束条件

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值