【随机过程】 4 -随机过程的频域分析2 - 谱表示

随机过程的频域分析

1. 谱表示的定义

  对随机过程做傅里叶分析的困难在于,随机过程一般不是绝对可积的,积分不收敛就没有办法做傅里叶变换。

  如果随机过程能够做傅里叶变换的话,应该是写成这样的

Z ( t ) = 1 2 π ∫ − ∞ + ∞ Z ( ω ) e x p ( j ω t ) d ω Z(t) = \frac{1}{2 \pi} \int_{-\infty}^{+\infty} Z(\omega) exp(j\omega t) d\omega Z(t)=2π1+Z(ω)exp(jωt)dω

  我们之前采取的方案是,采用二阶矩的方法定义谱,基于相关函数是收敛的角度,找到了功率谱,进行随机过程谱的表示,这是一种物理上的方法

  现在,我们用一种更为数学的方法进行描述。因为积分存在不收敛的情况,我们就用原函数的形式表示频谱。这样的话,不收敛的地方,其实就是频率的不可微的点。通过找原函数的形式,我们能够避免求积分不收敛的问题。

F ( ω ) = ∫ Z ( ω ) d ω F(\omega) = \int Z(\omega) d\omega F(ω)=Z(ω)dω

  因此,我们就可以用Stieltjes integral的形式,重新表示随机过程

Stieltjes integral Z ( t ) = 1 2 π ∫ − ∞ + ∞ e x p ( j ω t ) d F ( ω ) \text{Stieltjes integral} \\ Z(t) = \frac{1}{2 \pi} \int_{-\infty}^{+\infty} exp(j\omega t) dF(\omega) Stieltjes integralZ(t)=2π1+exp(jωt)dF(ω)

  我们之前介绍的功率谱,是从二阶量的角度去描述随机过程的谱,现在,我们使用谱表示,能够基于一阶的形式去描述随机过程的谱了

  在这里面F(ω)也是一个随机过程,叫做谱过程,因为是以频率为标记的一个随机过程。因此dF(ω)实际上是有随机性的。

2. 谱表示的性质

2.1 概述

  谱表示是一个正交增量过程,具有这样的性质

( 1 ) ω = ω ′ ⇒ E ( d F Z ( ω ) d F ( ω ) ‾ ) = 0 ( 2 ) ω = ω ′ ⇒ E ( d F Z ( ω ) d F ( ω ) ‾ ) = E ∣ d F Z ( ω ) ∣ 2 = S Z ( ω ) d ω (1) \quad \omega \cancel= \omega' \Rightarrow E(dF_Z(\omega) \overline{dF(\omega)}) = 0 \\ (2) \quad \omega = \omega' \Rightarrow E(dF_Z(\omega) \overline{dF(\omega)}) = E|dF_Z(\omega)|^2 = S_Z(\omega) d\omega (1)ω= ωE(dFZ(ω)dF(ω))=0(2)ω=ωE(dFZ(ω)dF(ω))=EdFZ(ω)2=SZ(ω)dω

  下面会针对这两点进行证明

2.2 正交增量特性

2.3.1 正交增量过程的定义

orthogonal Increment \text{orthogonal Increment} orthogonal Increment

  第一个叫做正交增量特性。所谓正交增量特性就是,如果函数F具有正交增量特性,那么顺序取四个点ω1234,任意两点之间能够构成一个增量,只要这些增量是不重叠的,这些增量彼此就是正交的。

F ( ω ) ⇒ ∀ ω 1 , ω 2 , ω 3 , ω 4 ( F ( ω 2 ) − F ( ω 1 ) ) ⊥ ( F ( ω 4 ) − F ( ω 3 ) ) F(\omega) \Rightarrow \forall \omega_1,\omega_2,\omega_3,\omega_4 \\ (F(\omega_2) - F(\omega_1)) \perp (F(\omega_4) - F(\omega_3)) F(ω)ω1,ω2,ω3,ω4(F(ω2)F(ω1))(F(ω4)F(ω3))

  所谓正交,就是内积为0,而对于随机过程的内积,就是相关。因此,如果随机过程的增量是不相关的,那么这就是一个正交增量过程

ω = ω ′ ⇒ E ( d F Z ( ω ) d F ( ω ) ‾ ) = 0 \omega \cancel = \omega' \Rightarrow E(dF_Z(\omega) \overline{dF(\omega)}) = 0 ω= ωE(dFZ(ω)dF(ω))=0

  而我们的谱过程,就是一个正交增量,过程,因此,会得到我们上面的结论

2.3.2 正交增量特性的解读

  这里我们想对这个谱过程的正交性进行一些解读。

  我们把谱表示与周期函数的傅里叶展开进行对比

Z ( t ) = Z ( t + T ) Z ( t ) = ∑ − ∞ + ∞ α k e x p ( j ω k t ) a k = 1 T ∫ − T 2 + T 2 Z ( t ) e x p ( − j ω k t ) d t Z(t) = Z(t +T) \\ Z(t) = \sum_{-\infty}^{+\infty} \alpha_k exp(j\omega_kt) \\ a_k =\frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} Z(t) exp(-j\omega_kt)dt Z(t)=Z(t+T)Z(t)=+αkexp(jωkt)ak=T12T+2TZ(t)exp(jωkt)dt

  谱表示
Z ( t ) = 1 2 π ∫ − ∞ + ∞ e x p ( j ω t ) d F ( ω ) Z(t) = \frac{1}{2 \pi} \int_{-\infty}^{+\infty} exp(j\omega t) dF(\omega) Z(t)=2π1+exp(jωt)dF(ω)

  我们发现谱表示和傅里叶级数展示是非常相似的,傅里叶级数展开使用求和的方法,对正交基进行展开。而谱表示是使用积分的方式,对正交基进行展开。谱过程对应的位置,实际上就是傅里叶级数展开时候的系数α。

  我们其实可以证明,这个系数α也是具有正交性的

  随机变量的正交,就是求相关。也就是证明

E ( α k α m ‾ ) = 0 k = m E(\alpha_k \overline{\alpha_m}) = 0 \quad k \cancel = m E(αkαm)=0k= m

  计算一下这个相关

E ( α k α m ‾ ) = E ( 1 T ∫ − T 2 + T 2 Z ( t ) e x p ( − j ω k t ) d t 1 T ∫ − T 2 + T 2 Z ( s ) ‾ e x p ( j ω m s ) d s ) = 1 T 2 ∫ − T 2 + T 2 ∫ − T 2 + T 2 E ( Z ( t ) Z ( s ) ‾ ) e x p ( − j ω k t ) ) e x p ( j ω m s ) ) d s d t = 1 T 2 ∫ − T 2 + T 2 ∫ − T 2 + T 2 R Z ( t − s ) e x p ( − j ω k t ) ) e x p ( j ω m s ) ) d s d t E(\alpha_k \overline{\alpha_m})=E(\frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} Z(t) exp(-j\omega_kt)dt\frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} \overline{Z(s)} exp(j\omega_ms)ds) \\ = \frac{1}{T^2} \int_{-\frac{T}{2}}^{+\frac{T}{2}}\int_{-\frac{T}{2}}^{+\frac{T}{2}}E(Z(t)\overline{Z(s)} )exp(-j\omega_kt))exp(j\omega_ms))dsdt \\ = \frac{1}{T^2} \int_{-\frac{T}{2}}^{+\frac{T}{2}}\int_{-\frac{T}{2}}^{+\frac{T}{2}}R_Z(t-s)exp(-j\omega_kt))exp(j\omega_ms))dsdt E(αkαm)=E(T12T+2TZ(t)exp(jωkt)dtT12T+2TZ(s)exp(jωms)ds)=T212T+2T2T+2TE(Z(t)Z(s))exp(jωkt))exp(jωms))dsdt=T212T+2T2T+2TRZ(ts)exp(jωkt))exp(jωms))dsdt

  进行积分换元

Let  t ′ = t − s Then E ( α k α m ‾ ) = 1 T 2 ∫ − T 2 + T 2 ∫ − T 2 + s + T 2 + s R Z ( t ′ ) e x p ( − j ω k t ′ ) ) e x p ( j ( ω m − ω k ) s ) ) d s d t ′ = 1 T 2 ∫ − T 2 + T 2 ∫ − T 2 + s + T 2 + s R Z ( t ′ ) e x p ( − j ω k t ′ ) d t ′ e x p ( j ( ω m − ω k ) s ) ) d s ( i ) \text{Let } t' = t-s \\ \text{Then} \\ E(\alpha_k \overline{\alpha_m}) = \frac{1}{T^2} \int_{-\frac{T}{2}}^{+\frac{T}{2}}\int_{-\frac{T}{2}+s}^{+\frac{T}{2}+s}R_Z(t')exp(-j\omega_kt'))exp(j(\omega_m-\omega_k)s))dsdt' \\ = \frac{1}{T^2} \int_{-\frac{T}{2}}^{+\frac{T}{2}}\int_{-\frac{T}{2}+s}^{+\frac{T}{2}+s}R_Z(t')exp(-j\omega_kt')dt' exp(j(\omega_m-\omega_k)s))ds \quad\quad(i) Let t=tsThenE(αkαm)=T212T+2T2T+s+2T+sRZ(t)exp(jωkt))exp(j(ωmωk)s))dsdt=T212T+2T2T+s+2T+sRZ(t)exp(jωkt)dtexp(j(ωmωk)s))ds(i)

  下面,我们来说明一下相关函数具有周期性

  由于做傅里叶级数展开的函数是周期函数,则有

E ∣ Z ( t ) − Z ( t − T ) ∣ 2 = 0 ⇒ R Z ( t + T ) = R Z ( t ) E|Z(t) - Z(t-T)|^2 = 0 \Rightarrow R_Z(t+T) = R_Z(t) EZ(t)Z(tT)2=0RZ(t+T)=RZ(t)

  因exp(-jωkt)也是一个周期函数,因此有

R Z ( t ′ ) e x p ( − j ω k t ′ ) ⇒ Periodic R_Z(t')exp(-j\omega_kt') \Rightarrow \text{Periodic} RZ(t)exp(jωkt)Periodic

  因此由于周期函数的积分与起点无关,因此(i)式可以表示为

E ( α k α m ‾ ) = 1 T 2 ∫ − T 2 + T 2 ∫ − T 2 + T 2 R Z ( t ′ ) e x p ( − j ω k t ′ ) d t ′ e x p ( j ( ω m − ω k ) s ) ) d s = 1 T 2 ∫ − T 2 + T 2 R Z ( t ′ ) e x p ( − j ω k t ′ ) d t ′ ∫ − T 2 + T 2 e x p ( j ( ω m − ω k ) s ) ) d s E(\alpha_k \overline{\alpha_m}) = \frac{1}{T^2} \int_{-\frac{T}{2}}^{+\frac{T}{2}}\int_{-\frac{T}{2}}^{+\frac{T}{2}}R_Z(t')exp(-j\omega_kt')dt' exp(j(\omega_m-\omega_k)s))ds \\ = \frac{1}{T^2} \int_{-\frac{T}{2}}^{+\frac{T}{2}}R_Z(t')exp(-j\omega_kt')dt' \int_{-\frac{T}{2}}^{+\frac{T}{2}}exp(j(\omega_m-\omega_k)s))ds E(αkαm)=T212T+2T2T+2TRZ(t)exp(jωkt)dtexp(j(ωmωk)s))ds=T212T+2TRZ(t)exp(jωkt)dt2T+2Texp(j(ωmωk)s))ds

  同时

∫ − T 2 + T 2 e x p ( j ( ω m − ω k ) s ) ) d s = ∫ − T 2 + T 2 e x p ( − j 2 ( k − m ) π T s ) d s = 0 s . t . k = m \int_{-\frac{T}{2}}^{+\frac{T}{2}}exp(j(\omega_m-\omega_k)s))ds \\ = \int_{-\frac{T}{2}}^{+\frac{T}{2}}exp(-j\frac{2(k-m)\pi}{T}s)ds = 0 \\ s.t. \quad k \cancel = m 2T+2Texp(j(ωmωk)s))ds=2T+2Texp(jT2(km)πs)ds=0s.t.k= m

  因此,我们就证明了,傅里叶级数的系数是具有正交性的。

  因此,我们也从侧面说明了,谱过程确实是具有正交增量特性的

α k ⊥ α m ⇒ d F Z ( m 1 ) ⊥ d F Z ( m 2 ) \alpha_k \perp \alpha_m \Rightarrow dF_Z(m_1) \perp dF_Z(m_2) αkαmdFZ(m1)dFZ(m2)

  也就说明了,谱过程在不同频点处是正交的

2.3 谱表示与功率谱

  我们使用谱表示表示相关函数

R Z ( t , s ) = E ( Z ( t ) Z ( s ) ‾ ) = E ( 1 2 π ∫ − ∞ + ∞ e x p ( j ω t ) d F Z ( ω ) 1 2 π ∫ − ∞ + ∞ e x p ( j ω ′ s ) d F Z ( ω ′ ) ‾ ) = 1 4 π 2 ∫ − ∞ + ∞ ∫ − ∞ + ∞ e x p ( j ω t ) e x p ( − j ω ′ s ) E ( d F Z ( ω ) d F Z ( ω ′ ) ‾ ) R_Z(t,s) = E(Z(t) \overline {Z(s)}) \\ = E(\frac{1}{2 \pi} \int_{-\infty}^{+\infty} exp(j\omega t) dF_Z(\omega) \overline{\frac{1}{2 \pi} \int_{-\infty}^{+\infty} exp(j\omega' s) dF_Z(\omega')}) \\ = \frac{1}{4\pi^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} exp(j\omega t)exp(-j\omega' s)E(dF_Z(\omega) \overline{dF_Z(\omega')}) RZ(t,s)=E(Z(t)Z(s))=E(2π1+exp(jωt)dFZ(ω)2π1+exp(jωs)dFZ(ω))=4π21++exp(jωt)exp(jωs)E(dFZ(ω)dFZ(ω))

  由于谱过程的正交性,只有ω相等的时候才有值,因此,二重积分可以简化为一重积分

R Z ( t , s ) = 1 4 π 2 ∫ − ∞ + ∞ e x p ( j ω ( t − s ) ) E ∣ d F Z ( ω ) ∣ 2 R_Z(t,s)=\frac{1}{4\pi^2} \int_{-\infty}^{+\infty} exp(j\omega (t-s))E|dF_Z(\omega)|^2 RZ(t,s)=4π21+exp(jω(ts))EdFZ(ω)2

  用功率谱的形式进行表示

R Z ( t , s ) = 1 2 π ∫ − ∞ + ∞ S Z ( ω ) e x p ( j ω ( t − s ) ) d ω R_Z(t,s) = \frac{1}{2 \pi} \int_{-\infty}^{+\infty} S_Z(\omega) exp(j\omega(t-s))d\omega RZ(t,s)=2π1+SZ(ω)exp(jω(ts))dω

  通过上下两个式子相等,我们可以得到

E ∣ d F Z ( ω ) ∣ 2 = S Z ( ω ) d ω E|dF_Z(\omega)|^2 = S_Z(\omega) d \omega EdFZ(ω)2=SZ(ω)dω

3. 谱表示与线性系统响应

  有了谱表示之后,我们计算随机信号通过线性系统就有了新的工具

Y ( t ) = ∫ − ∞ + ∞ h ( t − u ) Z ( u ) d u = 1 2 π ∫ − ∞ + ∞ h ( t − u ) ∫ − ∞ + ∞ e x p ( j ω u ) d F Z ( ω ) d u Y(t) = \int_{-\infty}^{+\infty} h(t-u) Z(u) du \\ = \frac{1}{2\pi}\int_{-\infty}^{+\infty} h(t-u) \int_{-\infty}^{+\infty} exp(j\omega u) dF_Z(ω) du Y(t)=+h(tu)Z(u)du=2π1+h(tu)+exp(jωu)dFZ(ω)du

  换元

Let  t − u = u ′ Then Y ( t ) = 1 2 π ∫ − ∞ + ∞ h ( u ′ ) ∫ − ∞ + ∞ e x p ( − j ω u ′ ) e x p ( j ω t ) d F Z ( ω ) d u ′ = 1 2 π ∫ − ∞ + ∞ e x p ( j ω t ) ∫ − ∞ + ∞ h ( u ′ ) e x p ( − j ω u ′ ) d u ′ d F Z ( ω ) = 1 2 π ∫ − ∞ + ∞ H ( ω ) e x p ( j ω t ) d F Z ( ω ) = 1 2 π ∫ − ∞ + ∞ e x p ( j ω t ) d F Y ( ω ) \text{Let } t-u = u' \\ \text{Then} Y(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} h(u') \int_{-\infty}^{+\infty} exp(-j\omega u')exp(j\omega t) dF_Z(ω) du'\\ = \frac{1}{2\pi}\int_{-\infty}^{+\infty}exp(j\omega t)\int_{-\infty}^{+\infty} h(u')exp(-j\omega u') du'dF_Z(ω) \\ = \frac{1}{2\pi}\int_{-\infty}^{+\infty}H(\omega)exp(j\omega t)dF_Z(ω) \\ = \frac{1}{2\pi}\int_{-\infty}^{+\infty}exp(j\omega t)dF_Y(ω) Let tu=uThenY(t)=2π1+h(u)+exp(jωu)exp(jωt)dFZ(ω)du=2π1+exp(jωt)+h(u)exp(jωu)dudFZ(ω)=2π1+H(ω)exp(jωt)dFZ(ω)=2π1+exp(jωt)dFY(ω)

  其中

d F Y ( ω ) = H ( ω ) d F Z ( ω ) dF_Y(ω) = H(\omega) dF_Z(ω) dFY(ω)=H(ω)dFZ(ω)

  引入功率谱和谱表示的关系

S Y ( ω ) d ω = E ∣ d F Y ( ω ) ∣ 2 = E ∣ H ( ω ) d F Z ( ω ) ∣ 2 = ∣ H ( ω ) ∣ 2 E ∣ d F Z ( ω ) ∣ 2 = ∣ H ( ω ) ∣ 2 S Z ( ω ) S_Y(\omega) d \omega=E|dF_Y(\omega)|^2 = E|H(\omega) dF_Z(ω)|^2\\ = |H(\omega)|^2 E|dF_Z(\omega)|^2 = |H(\omega)|^2 S_Z(\omega) SY(ω)dω=EdFY(ω)2=EH(ω)dFZ(ω)2=H(ω)2EdFZ(ω)2=H(ω)2SZ(ω)

4. 谱表示与宽平稳随机过程

4.1 宽平稳随机过程与复指函数的等距同构

  我们再来观测一下,宽平稳随机过程的谱表示

Z ( t ) = 1 2 π ∫ − ∞ + ∞ e x p ( j ω t ) d F Z ( ω ) Z(t) = \frac{1}{2 \pi} \int_{-\infty}^{+\infty} exp(j\omega t) dF_Z(\omega) Z(t)=2π1+exp(jωt)dFZ(ω)

  我们发现随机过程和复指函数之间具有某种对应关系。

  随机过程是时间的函数,并且如果时间确定了以后是一个随机变量,仍然是一个样本空间的函数,因此随机过程是一个二元函数

  复指函数是时间的函数,并且时间确定了以后是一个频率的函数,因此复指函数也是一个二元函数。

Z ( ω , t ) ↔ e x p ( j ω t ) Z(\omega,t) \leftrightarrow exp(j\omega t) Z(ω,t)exp(jωt)

  下面,我们希望通过构建某种关系,找到复指函数和随机过程之间的联系。

  在这里我们定义两个距离

∣ ∣ Z ( t ) − Z ( s ) ∣ ∣ 1 = ∣ ∣ e x p ( j ω t ) − e x p ( j ω s ) ∣ ∣ 2 ||Z(t)-Z(s)||_1 = ||exp(j \omega t) - exp(j\omega s)||_2 Z(t)Z(s)1=exp(jωt)exp(jωs)2

  随机过程的距离和复指函数的距离分别定义在不同的空间中,但是他们实际是相等的。这种关系叫做等距同构。

  我们具体的写出这两个距离,并且进行证明。

E ∣ ∣ Z ( t ) − Z ( s ) ∣ ∣ 2 ↔ 1 2 π ∫ − ∞ + ∞ ∣ ∣ e x p ( j ω t ) − e x p ( j ω s ) ∣ ∣ 2 S Z ( ω ) d ω E||Z(t)-Z(s)||^2 \leftrightarrow \frac{1}{2\pi} \int_{-\infty}^{+\infty} ||exp(j \omega t) - exp(j\omega s)||^2 S_Z(\omega) d\omega EZ(t)Z(s)22π1+exp(jωt)exp(jωs)2SZ(ω)dω

  左边

E ∣ ∣ Z ( t ) − Z ( s ) ∣ ∣ 2 = E ∣ Z ( t ) ∣ 2 + E ∣ Z ( s ) ∣ 2 − 2 E ( Z ( t ) Z ( s ) ) = 2 R Z ( 0 ) − 2 R Z ( t − s ) = 2 ( R Z ( 0 ) − R Z ( t − s ) ) E||Z(t)-Z(s)||^2 = E|Z(t)|^2 +E|Z(s)|^2 - 2 E(Z(t)Z(s)) \\ = 2R_Z(0) - 2R_Z(t-s) = 2(R_Z(0)-R_Z(t-s)) EZ(t)Z(s)2=EZ(t)2+EZ(s)22E(Z(t)Z(s))=2RZ(0)2RZ(ts)=2(RZ(0)RZ(ts))

  右边

1 2 π ∫ − ∞ + ∞ ∣ ∣ e x p ( j ω t ) − e x p ( j ω s ) ∣ ∣ 2 S Z ( ω ) d ω = 1 2 π ∫ − ∞ + ∞ ( e x p ( j ω t ) e x p ( j ω t ) ‾ + e x p ( j ω s ) e x p ( j ω s ) ‾ − 2 e x p ( j ω t ) e x p ( j ω s ) ‾ ) S Z ( ω ) d ω = 1 2 π ∫ − ∞ + ∞ ( 2 − 2 e x p ( j ω ( t − s ) ) ) S Z ( ω ) d ω = 1 2 π ∫ − ∞ + ∞ 2 S Z ( ω ) d ω − 1 2 π ∫ − ∞ + ∞ 2 e x p ( j ω ( t − s ) ) S Z ( ω ) d ω = 2 R Z ( 0 ) − 2 R Z ( t − s ) = 2 ( R Z ( 0 ) − R Z ( t − s ) ) \frac{1}{2\pi} \int_{-\infty}^{+\infty} ||exp(j \omega t) - exp(j\omega s)||^2 S_Z(\omega) d\omega \\ = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (exp(j \omega t)\overline{exp(j \omega t)} + exp(j\omega s)\overline{exp(j\omega s)}-2exp(j \omega t)\overline{exp(j\omega s)}) S_Z(\omega) d\omega =\frac{1}{2\pi} \int_{-\infty}^{+\infty} (2-2exp(j\omega(t-s))) S_Z(\omega) d\omega \\ = \frac{1}{2\pi} \int_{-\infty}^{+\infty} 2S_Z(\omega) d\omega - \frac{1}{2\pi} \int_{-\infty}^{+\infty} 2exp(j\omega(t-s)) S_Z(\omega) d\omega \\ = 2R_Z(0) - 2R_Z(t-s) = 2(R_Z(0)-R_Z(t-s)) 2π1+exp(jωt)exp(jωs)2SZ(ω)dω=2π1+(exp(jωt)exp(jωt)+exp(jωs)exp(jωs)2exp(jωt)exp(jωs))SZ(ω)dω=2π1+(22exp(jω(ts)))SZ(ω)dω=2π1+2SZ(ω)dω2π1+2exp(jω(ts))SZ(ω)dω=2RZ(0)2RZ(ts)=2(RZ(0)RZ(ts))

  证明复指函数和随机过程确实具有等距同构关系。

  事实上,宽平稳随机过程的本质特性,已经被复指函数说明了。我们前面介绍过宽平稳随机过程的典例就是调幅调相信号和随机电报信号。调幅调相信号是个震荡的正弦函数,随机电报信号是个震荡的方波信号。现在,我们要给这种震荡找一种解释。因为宽平稳随机过程与复指函数具有距离同构关系,而复指函数最大的特性就是震荡,因此,震荡特性是wss的一个普遍特性

4.2 等距同构的应用–采样定理

  这种等距同构有一个直接的应用,就是香农采样定理。

Shannon Sampling Theorem \text{Shannon Sampling Theorem} Shannon Sampling Theorem

  一般来说,如果一个连续数据,能够使用离散数据表示,那么必然是经过采样过程,变成了很多的采样点

Z ( t ) ↔ { Z k } k = − ∞ + ∞ Z(t) \leftrightarrow \{Z_k \}_{k=-\infty}^{+\infty} Z(t){Zk}k=+

  而采样的本质,实际上,就是利用采样得到的点做系数,用一组合适的基做展开

Z ( t ) ↔ { Z k } k = − ∞ + ∞ ⇔ Z ( t ) = ∑ k Z k ϕ k ( t ) Z(t) \leftrightarrow \{Z_k \}_{k=-\infty}^{+\infty} \Leftrightarrow Z(t) = \sum_k Z_k \phi_k(t) Z(t){Zk}k=+Z(t)=kZkϕk(t)

Z k = Z ( k Δ t ) ⇒ Z ( t ) = ∑ k = − ∞ + ∞ Z ( k Δ t ) ϕ k ( t ) Z_k = Z(k \Delta t) \Rightarrow Z(t) = \sum_{k=-\infty}^{+\infty} Z(k \Delta t) \phi_k(t) Zk=Z(kΔt)Z(t)=k=+Z(kΔt)ϕk(t)

  通过选取的基不同,就能够实现信号的均匀采样和非均匀采样。

  如果采样信号能够完美恢复原始信号,对采样率是有要求的,采样率必须大于单边带宽的两倍。

  因此,如果是完美预测,也就是希望采样构建的信号与原信号之间的误差是0

∣ ∣ Z ( t ) − ∑ k = − ∞ + ∞ Z ( k Δ t ) ϕ k ( t ) ∣ ∣ 1 2 = 0 ||Z(t)-\sum_{k=-\infty}^{+\infty} Z(k \Delta t) \phi_k(t)||^2_1 =0 Z(t)k=+Z(kΔt)ϕk(t)12=0

  利用距离的同构关系,我们可以把随机过程的距离转换为复指函数的距离

∣ ∣ Z ( t ) − ∑ k = − ∞ + ∞ Z ( k Δ t ) ϕ k ( t ) ∣ ∣ 1 2 = ∣ ∣ e x p ( j ω t ) − ∑ k = − ∞ + ∞ e x p ( j ω k Δ t ) ϕ k ( t ) ∣ ∣ 2 2 ||Z(t)-\sum_{k=-\infty}^{+\infty} Z(k \Delta t) \phi_k(t)||^2_1 = || exp(j\omega t)-\sum_{k=-\infty}^{+\infty} exp(j\omega k \Delta t) \phi_k(t) ||^2_2 Z(t)k=+Z(kΔt)ϕk(t)12=exp(jωt)k=+exp(jωkΔt)ϕk(t)22

  计算复指函数的距离

∣ ∣ e x p ( j ω t ) − ∑ k = − ∞ + ∞ e x p ( j ω k Δ t ) ϕ k ( t ) ∣ ∣ 2 2 = 1 2 π ∫ − ∞ + ∞ ∣ e x p ( j ω t ) − ∑ k = − ∞ + ∞ e x p ( j ω k Δ t ) ϕ k ( t ) ∣ 2 S Z ( ω ) d ω || exp(j\omega t)-\sum_{k=-\infty}^{+\infty} exp(j\omega k \Delta t) \phi_k(t) ||^2_2 \\ =\frac{1}{2\pi} \int_{-\infty}^{+\infty} | exp(j\omega t)-\sum_{k=-\infty}^{+\infty} exp(j\omega k \Delta t) \phi_k(t) |^2 S_Z(\omega) d\omega exp(jωt)k=+exp(jωkΔt)ϕk(t)22=2π1+exp(jωt)k=+exp(jωkΔt)ϕk(t)2SZ(ω)dω

  我们希望通过复指函数,确定φ的合适的表达式

  首先,我们的这个距离并没有体现对采样率限制的问题。这个积分一定是带限的。

  我们给功率谱做一个带限

 Bond Limited S Z ( ω ) = 0 ∣ ω ∣ ≥ B \text{ Bond Limited} \\ S_Z(\omega) = 0 \quad |\omega| \geq B  Bond LimitedSZ(ω)=0ωB
  则,无穷区间的积分可以转化为有限区间的积分

∣ ∣ e x p ( j ω t ) − ∑ k = − ∞ + ∞ e x p ( j ω k Δ t ) ϕ k ( t ) ∣ ∣ 2 2 = 1 2 π ∫ − B + B ∣ e x p ( j ω t ) − ∑ k = − ∞ + ∞ e x p ( j ω k Δ t ) ϕ k ( t ) ∣ 2 S Z ( ω ) d ω || exp(j\omega t)-\sum_{k=-\infty}^{+\infty} exp(j\omega k \Delta t) \phi_k(t) ||^2_2 \\ = \frac{1}{2\pi} \int_{-B}^{+B} | exp(j\omega t)-\sum_{k=-\infty}^{+\infty} exp(j\omega k \Delta t) \phi_k(t) |^2 S_Z(\omega) d\omega exp(jωt)k=+exp(jωkΔt)ϕk(t)22=2π1B+Bexp(jωt)k=+exp(jωkΔt)ϕk(t)2SZ(ω)dω

  实际上,我们要找的式子就是

e x p ( j ω t ) − ∑ k = − ∞ + ∞ e x p ( j ω k Δ t ) ϕ k ( t ) = 0 ω ∈ ( − B , B ) exp(j\omega t)-\sum_{k=-\infty}^{+\infty} exp(j\omega k \Delta t) \phi_k(t) = 0 \\ \omega \in (-B,B) exp(jωt)k=+exp(jωkΔt)ϕk(t)=0ω(B,B)

  即

e x p ( j ω t ) = ∑ k = − ∞ + ∞ e x p ( j ω k Δ t ) ϕ k ( t ) exp(j\omega t) = \sum_{k=-\infty}^{+\infty} exp(j\omega k \Delta t) \phi_k(t) exp(jωt)=k=+exp(jωkΔt)ϕk(t)

  我们发现,这是一个以φk(t)为系数的傅里叶级数展开。

ϕ k ( t ) = 1 2 B ∫ − B B e x p ( j ω t ) e x p ( − j ω k Δ t ) d ω = 1 2 B ∫ − B B e x p ( j ω ( t − k Δ t ) ) d ω = 1 2 B ∫ − B B c o s ( ( t − k Δ t ) ω ) d ω = s i n ( ( t − k Δ t ) B ) B ( t − k Δ t ) \phi_k(t) = \frac{1}{2B}\int_{-B}^{B} exp(j\omega t) exp(-j \omega k \Delta t) d\omega \\ = \frac{1}{2B}\int_{-B}^{B} exp(j\omega (t-k \Delta t)) d\omega \\ = \frac{1}{2B}\int_{-B}^{B} cos( (t-k \Delta t)\omega) d\omega \\ = \frac{sin((t-k\Delta t)B)}{B(t-k\Delta t)} ϕk(t)=2B1BBexp(jωt)exp(jωkΔt)dω=2B1BBexp(jω(tkΔt))dω=2B1BBcos((tkΔt)ω)dω=B(tkΔt)sin((tkΔt)B)

  得到一个Sa函数的解

S a ( x ) = s i n ( x ) x Sa(x) = \frac{sin(x)}{x} Sa(x)=xsin(x)

  然后我们就得到了傅里叶展开的系数,也就得到了采样定理展开的基函数

Z ( t ) = ∑ k Z k s i n ( ( t − k Δ t ) B ) B ( t − k Δ t ) Z(t) = \sum_k Z_k \frac{sin((t-k\Delta t)B)}{B(t-k\Delta t)} Z(t)=kZkB(tkΔt)sin((tkΔt)B)

  这与均匀采样得到的结论是完全一致的

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值