【随机过程】10 -高斯过程与布朗运动

高斯过程与布朗运动

1. 布朗运动概述

1.1 定义

  布朗运动有很多种等价定义,这里给出比较常见的一种

Brown Motion B ( t ) (1)  B ( 0 ) = 0 (2) Independent Increment  (3)  B ( t ) − B ( s ) ∼ N ( 0 , σ 2 ( t − s ) ) \text{Brown Motion} B(t) \\ \text{(1) } B(0) = 0 \\ \text{(2) Independent Increment } \\ \text{(3) } B(t) - B(s) \sim N(0,\sigma^2(t-s)) Brown MotionB(t)(1) B(0)=0(2) Independent Increment (3) B(t)B(s)N(0,σ2(ts))

  • 布朗运动初值为0
  • 是个独立增量过程,就是布朗运动的增量之间彼此独立
  • 布朗运动的差值符合高斯分布

1.2 布朗运动与高斯过程

  布朗运动一定是高斯过程,即任取n个时刻得到的一定是联合高斯分布

Gaussian Process ∀ n ∀ t 1 ≤ . . . ≤ t n ( B ( t 1 ) , . . . , B ( t n ) ) T = B \text{Gaussian Process} \\ \forall n \quad \forall t_1 \leq ... \leq t_n \\ (B(t_1),...,B(t_n))^T = B Gaussian Processnt1...tn(B(t1),...,B(tn))T=B

  我们可以来证明一下这个事情

  首先,我们定义一个随机矢量

B ~ = ( B ( t 1 ) B ( t 2 ) − B ( t 1 ) . . . B ( t n ) − B ( t n − 1 ) ) \widetilde B = \begin{pmatrix} B(t_1) \\ B(t_2) - B(t_1) \\ ... \\ B(t_n) - B(t_{n-1}) \end{pmatrix} B =B(t1)B(t2)B(t1)...B(tn)B(tn1)

  这个随机矢量一定是一个联合高斯。

  因为首先,每一个随机变量,都是布朗运动两个时刻的差值,一定是个高斯分布,并且,对于第一项

B ( t 1 ) = B ( t 1 ) − 0 = B ( t 1 ) − B ( 0 ) B(t_1) = B(t_1) - 0 = B(t_1) - B(0) B(t1)=B(t1)0=B(t1)B(0)

  并且,布朗运动具有独立增量的特性,这个随机矢量的每一个随机变量都是互相不重叠的增量,一定是不相关的。如果n个高斯分布是不相关的,得到的一定是一个联合高斯。

  然后,我们可以看待一下B与定义的这个随机矢量之间具有线性变换的关系

( B ( t 1 ) B ( t 2 ) − B ( t 1 ) . . . B ( t n ) − B ( t n − 1 ) ) = A ∗ ( B ( t 1 ) B ( t 2 ) . . . B ( t n ) ) = ( 1 − 1 1 − 1 1 . . . . . . . . . . . . − 1 1 ) ∗ ( B ( t 1 ) B ( t 2 ) . . . B ( t n ) ) \begin{pmatrix} B(t_1) \\ B(t_2) - B(t_1) \\ ... \\ B(t_n) - B(t_{n-1}) \end{pmatrix} = A*\begin{pmatrix} B(t_1) \\ B(t_2) \\ ... \\ B(t_n) \end{pmatrix} \\ = \begin{pmatrix} 1 \\ -1&1 \\ &-1&1 \\ &...&...\\ &...&...&-1 &1 \end{pmatrix}*\begin{pmatrix} B(t_1) \\ B(t_2) \\ ... \\ B(t_n) \end{pmatrix} B(t1)B(t2)B(t1)...B(tn)B(tn1)=AB(t1)B(t2)...B(tn)=1111......1......11B(t1)B(t2)...B(tn)

  因为矩阵A是可逆的,因此可以把B表示为

B = A − 1 B ~ B = A^{-1} \widetilde{B} B=A1B

  联合高斯的线性变换一定是一个联合高斯,因此,我们可以证明,布朗分布一定是一个高斯过程。

  我们可以写出B’的概率密度

B ~ = ( B ( t 1 ) B ( t 2 ) − B ( t 1 ) . . . B ( t n ) − B ( t n − 1 ) ) f B ~ ( x 1 , . . . , x n ) = ∏ k = 1 n 1 2 π ( t k − t k − 1 ) σ e x p ( − ( x k − x k − 1 ) 2 2 σ 2 ( t k − t k − 1 ) ) \widetilde B = \begin{pmatrix} B(t_1) \\ B(t_2) - B(t_1) \\ ... \\ B(t_n) - B(t_{n-1}) \end{pmatrix} \\ f_{\widetilde{B}} (x_1,...,x_n) = \prod_{k=1}^{n} \frac{1}{\sqrt{2 \pi(t_k - t_{k-1}) }\sigma} exp(-\frac{(x_k - x_{k-1})^2}{2\sigma^2(t_k - t_{k-1})}) B =B(t1)B(t2)B(t1)...B(tn)B(tn1)fB (x1,...,xn)=k=1n2π(tktk1) σ1exp(2σ2(tktk1)(xkxk1)2)

1.3 布朗运动的均值和协方差

  接下来,我们可以求一下布朗运动这个高斯过程的均值和方差

Mean E ( B ( t ) ) = E ( B ( t ) − B ( 0 ) ) ∼ N ( 0 , σ 2 ( t − 0 ) ) \text{Mean} \\ E(B(t))= E(B(t) -B(0)) \sim N(0,\sigma^2(t-0)) MeanE(B(t))=E(B(t)B(0))N(0,σ2(t0))

  可见均值为0

  再求一下协方差

Assuming  s < t R B ( t , s ) = E ( B ( t ) B ( s ) ) = E ( ( B ( t ) − B ( s ) + B ( s ) ) B ( s ) ) = E ( ( B ( t ) − B ( s ) ) ( B ( s ) − B ( 0 ) ) + E ( B 2 ( s ) ) = 0 + σ 2 s = σ 2 s = σ 2 m i n ( t , s ) \text{Assuming } s< t \\ R_B(t,s)=E(B(t)B(s)) = E((B(t) - B(s)+B(s))B(s)) \\ = E((B(t)-B(s))(B(s) - B(0)) + E(B^2(s)) \\ = 0 + \sigma^2 s= \sigma^2 s = \sigma^2 min(t,s) Assuming s<tRB(t,s)=E(B(t)B(s))=E((B(t)B(s)+B(s))B(s))=E((B(t)B(s))(B(s)B(0))+E(B2(s))=0+σ2s=σ2s=σ2min(t,s)

2. 布朗运动的变形

  布朗运动具有非常大的弹性,对布朗运动的做很多的变形得到的往往还是布朗运动,我们这里举三个例子

2.1 做差

  第一个例子,我们假设U是一个确定性变量,判断下面这个例子是否也是布朗运动

B ~ ( t ) = B ( t + U ) − B ( U ) \widetilde{B}(t) = B(t+U) -B(U) B (t)=B(t+U)B(U)

  判断是不是布朗运动需要做三方面的测试

  • 是否是高斯过程
  • 均值是否为0
  • 协方差是否与最小的时间有关

  两个高斯过程的差一定也是高斯过程

E ( B ~ ) = E ( B ( t + U ) − B ( U ) ) = 0 E(\widetilde{B}) = E(B(t+U) -B(U)) = 0 E(B )=E(B(t+U)B(U))=0

  均值为0

  协方差

E ( B ~ ( t ) B ~ ( s ) ) = E ( ( B ( t + U ) − B ( U ) ) ( B ( s + U ) − B ( U ) ) ) = E ( B ( t + U ) B ( s + U ) ) − E ( B ( t + U ) B ( U ) ) − E ( B ( U ) B ( s + U ) ) + E ( B ( U ) B ( U ) ) = σ 2 ( s + U ) − σ 2 ( U ) − σ 2 ( U ) + σ 2 ( U ) = σ 2 s = σ 2 ( t , s ) E(\widetilde{B}(t)\widetilde{B}(s)) = E((B(t+U) -B(U))(B(s+U) -B(U))) \\ = E(B(t+U)B(s+U)) - E(B(t+U)B(U)) - E(B(U)B(s+U)) +E(B(U)B(U)) \\ = \sigma^2(s+U) - \sigma^2(U) - \sigma^2(U) +\sigma^2(U) \\ = \sigma^2 s = \sigma^2(t,s) E(B (t)B (s))=E((B(t+U)B(U))(B(s+U)B(U)))=E(B(t+U)B(s+U))E(B(t+U)B(U))E(B(U)B(s+U))+E(B(U)B(U))=σ2(s+U)σ2(U)σ2(U)+σ2(U)=σ2s=σ2(t,s)

  说明是布朗运动

2.2 线性因子

  再来判断一个变形,是否是布朗运动

B ~ ( t ) = a B ( a − 2 t ) \widetilde B(t) = aB(a^{-2}t) B (t)=aB(a2t)

  首先这个变形一定是高斯过程

  均值一定也是0

  检查协方差即可

R B ~ ( t , s ) = a 2 E ( B ( a − 2 t ) B ( a − 2 s ) ) = a 2 σ 2 m i n ( a − 2 t , a − 2 s ) = σ 2 m i n ( t , s ) R_{\widetilde{B}}(t,s) = a^2 E(B(a^{-2}t)B(a^{-2}s)) \\ = a^2 \sigma^2min(a^{-2}t,a^{-2}s) = \sigma^2 min(t,s) RB (t,s)=a2E(B(a2t)B(a2s))=a2σ2min(a2t,a2s)=σ2min(t,s)

  仍然是布朗运动

2.3 倒数

B ~ ( t ) = t B ( 1 t ) \widetilde B(t) = t B(\frac{1}{t}) B (t)=tB(t1)

  求一下协方差

R B ~ ( t , s ) = t s σ 2 m i n ( 1 t , 1 s ) = σ 2 m i n ( s , t ) R_{\widetilde{B}}(t,s) = ts \sigma^2 min(\frac{1}{t} ,\frac{1}{s}) = \sigma^2 min(s ,t) RB (t,s)=tsσ2min(t1,s1)=σ2min(s,t)
  得到的也是一个布朗运动

3. 布朗运动的性质

3.1 反射原理

  布朗运动的第一个重要的特性就是反射原理。

  这里构成一个新的随机过程

B ~ ( t ) = B ( t + T ) − B ( T ) T: Random Variable \widetilde B(t) = B(t+T) - B(T) \\ \text{T: Random Variable} B (t)=B(t+T)B(T)T: Random Variable

  这里面的T是个随机变量,我们只要对T进行稍加约束,得到的会仍然是一个布朗运动。

3.1.1 停时特性

  我们要T具有停时特性

T :  Stapping Time T:\text{ Stapping Time} T: Stapping Time

  停时特性是指,T的统计特性只依赖于其之前的时间,也就是只依赖于t时刻之前的布朗运动。

P ( T = t ) ∝ { B ( s ) , s ≤ t } P(T=t) \propto \{B(s), s \leq t \} P(T=t){B(s),st}

  这里可以进行举例说明

T = m i n { s : B ( s ) = a } T = min \{s: B(s) = a \} T=min{s:B(s)=a}

  T是布朗运动首次到达a的时间,一旦布朗运动已经到达了a,产生了一个时间,就与后面的没有关系了。

  再举一个非停时的例子

T = m a x { s : B ( s ) = a } T = max \{s: B(s) = a \} T=max{s:B(s)=a}

  这里T是到达a的最后一次时间。因为每次布朗运动到达a,都会更新一个时间,因此这个结果一定是与未来的布朗运动有关的,所以就不是具有停时特性。

  再举一个非停时的例子

T = a r g m a x ( B ( s ) ) 0 ≤ s ≤ t T = argmax(B(s)) \quad 0 \leq s \leq t T=argmax(B(s))0st

  我们假设T是布朗运动在(0,t)时刻内的最大值,这个仍然是依赖于未来数据的一个例子,因此,也不具有停时特性。

3.1.2 强马尔科夫性

  布朗运动在停时的基础上构造的函数仍然是布朗运动,这个叫做强马尔科夫性

B ~ ( t ) = B ( t + T ) − B ( T ) T: Random Variable \widetilde B(t) = B(t+T) - B(T) \\ \text{T: Random Variable} B (t)=B(t+T)B(T)T: Random Variable

Strong Markov \text{Strong Markov} Strong Markov

在这里插入图片描述

  强马尔科夫性的直观描述就是,假设这是一个运动轨迹,当到达停时T之后,后面的运动就是一个严格的布朗运动了。以T为起点,后面的轨迹是布朗运动

3.1.3 强马尔科夫性的应用:反射

  所谓反射原理即,如果B(t)是布朗运动,取负数也是布朗运动

B ( t ) ~ = − B ( t ) Brown Motion \widetilde{B(t)} = -B(t) \\ \text{Brown Motion} B(t) =B(t)Brown Motion

  用在这里就是,\widetilde{B(t)}是布朗运动,取负号也是布朗运动

B ~ ( t ) = B ( t + T ) − B ( T ) T: Random Variable \widetilde B(t) = B(t+T) - B(T) \\ \text{T: Random Variable} B (t)=B(t+T)B(T)T: Random Variable

− B ~ ( t ) ⇒ Brown Motion -\widetilde B(t) \Rightarrow \text{Brown Motion} B (t)Brown Motion

  在图中表示的就是到达了停时T之后往下走的那个运动也是布朗运动

在这里插入图片描述

  反射原理就是,沿着随便一条线对布朗运动进行反射,得到的仍然是布朗运动。也就是从0开始的蓝色线是布朗运动,从0开始反射的绿线仍然是布朗运动。

Reflection Principle \text{Reflection Principle} Reflection Principle

3.1.4 基于反射计算复杂的分布

  基于反射原理可以计算复杂的分布,这里要计算这样两个分布

  第一个,首测到达a时间的分布

T a = m i n { s : B ( s ) = a } T_a = min\{s:B(s) = a\} Ta=min{s:B(s)=a}

  第二个,(0,t)内B能够取到的最大值的分布

B ˉ ( t ) = m a x 0 ≤ s ≤ t B ( s ) \bar{B}(t) = max_{0 \leq s \leq t} B(s) Bˉ(t)=max0stB(s)

在这里插入图片描述

  事实上,这两个事情具有等价的分布

F T a ( t ) = P ( T a ≤ t ) = P ( B ˉ ( t ) ≥ a ) F_{T_a(t)} = P(T_a \leq t) = P(\bar B(t) \geq a) FTa(t)=P(Tat)=P(Bˉ(t)a)

  如果Ta比t小,意味着(0,t)内,这个随机过程必然已经到达a了,那么也就必然这个随机过程当前值比a大。反过来,如果这个随机过程在t时刻的值比a大,必然在(0,t)时刻内已经达到a了。

  我们现在关心t时刻的分布情况。t时刻无非就是有两种情况,t时刻比a大的概率加上t时刻比a小的概率

F T a ( t ) = P ( B ˉ ( t ) > a , B ( t ) > a ) + P ( B ˉ ( t ) ≥ a , B ( t ) ≤ a ) F_{T_a(t)} = P(\bar{B}(t)> a ,B(t) > a) + P(\bar{B}(t)\geq a ,B(t) \leq a) FTa(t)=P(Bˉ(t)>a,B(t)>a)+P(Bˉ(t)a,B(t)a)

  我们先看前一项,如果t时刻布朗运动比a大,必定最大值大于a,两个是一个意思

P ( B ˉ ( t ) > a , B ( t ) > a ) = P ( B ( t ) > a ) P(\bar{B}(t)> a ,B(t) > a) = P(B(t) > a) P(Bˉ(t)>a,B(t)>a)=P(B(t)>a)

  接下来,我们要计算后一部分。后一部分可以通过反射来做。

  后面一部分其实表示的意思就是绿色的线。如果我们找到一个停时,反射一下,仍然是个布朗运动,我们假设反射完了了蓝线

B ( t ) ⇒ Reflection  B ∗ ( t ) B(t) \Rightarrow \text{Reflection } B^*(t) B(t)Reflection B(t)

  原来的分布意思是,(0,t)时刻布朗运动的最大值比a大,并且t时刻布朗运动比a小。反射之后意思就是,(0,t)时刻新的布朗运动最大值比a大,并且t时刻新布朗运动比a大。反射前后的分布是一样的。因此,我们又可以把后面的这个分布进行化简了。

P ( B ˉ ( t ) ≥ a , B ( t ) ≤ a ) = P ( B ˉ ∗ ( t ) ≥ a , B ∗ ( t ) ≥ a ) = P ( B ∗ ( t ) ≥ a ) P(\bar{B}(t)\geq a ,B(t) \leq a)=P(\bar{B}^*(t)\geq a ,B^*(t) \geq a) = P(B^*(t) \geq a) P(Bˉ(t)a,B(t)a)=P(Bˉ(t)a,B(t)a)=P(B(t)a)

  两项的值应该是一样的

F T a ( t ) = P ( B ˉ ( t ) > a , B ( t ) > a ) + P ( B ˉ ( t ) ≥ a , B ( t ) ≤ a ) = 2 P ( B ( t ) > a ) = 2 2 π t σ ∫ a + ∞ e x p ( − s 2 2 σ 2 t ) d s F_{T_a(t)} = P(\bar{B}(t)> a ,B(t) > a) + P(\bar{B}(t)\geq a ,B(t) \leq a) = 2P(B(t) > a) \\ = \frac{2}{\sqrt{2\pi t} \sigma} \int_{a}^{+\infty} exp(-\frac{s^2}{2\sigma^2 t})ds FTa(t)=P(Bˉ(t)>a,B(t)>a)+P(Bˉ(t)a,B(t)a)=2P(B(t)>a)=2πt σ2a+exp(2σ2ts2)ds

  相当于原本一个复杂的分布,我们要计算(0,t)内最大值的分布,我们现在只需要考虑端点的值就行了。

  概率密度就是分布函数的导数

f T a ( t ) = d F T a ( t ) d t f_{T_a}(t) = \frac{d F_{T_a(t)}}{dt} fTa(t)=dtdFTa(t)

3.2 二次变差

Quadratic Variation \text{Quadratic Variation} Quadratic Variation

  我们知道,布朗运动的方差是时间的一次函数,因此,可以推断出,布朗运动其实是与半阶t同阶的

B ( t ) E ( B 2 ( t ) ) = σ 2 t B ( t ) ∼ t B(t) \quad E(B^2(t)) = \sigma^2 t \quad B(t) \sim \sqrt{t} B(t)E(B2(t))=σ2tB(t)t

  当n趋近于无穷大的时候,布朗运动逐阶的差的平方和是个定值

∑ k = 1 n ( B ( t k ) − B ( t k − 1 ) ) 2 n → ∞ → σ 2 t 0 = t 0 < t 1 < . . . < t n = σ 2 t \sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2 \quad \underrightarrow{n \rightarrow \infty} \quad \sigma^2 t \\ 0 = t_0 < t_1 <...<t_n = \sigma^2 t k=1n(B(tk)B(tk1))2 nσ2t0=t0<t1<...<tn=σ2t

  注意这里我们没有加期望。

  我们可以通过两步来证明这个事情。即分别证明期望和方差

  先证明期望

E ( ∑ k = 1 n ( B ( t k ) − B ( t k − 1 ) ) 2 ) = ∑ k = 1 n E ( ( B ( t k ) − B ( t k − 1 ) ) 2 ) = σ 2 ∑ k = 1 n ( t k − t k − 1 ) = σ 2 t E(\sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2) = \sum_{k=1}^n E((B(t_k) - B(t_{k-1}))^2) \\ = \sigma^2 \sum_{k=1}^n(t_k-t_{k-1}) = \sigma^2t E(k=1n(B(tk)B(tk1))2)=k=1nE((B(tk)B(tk1))2)=σ2k=1n(tktk1)=σ2t

  为了方便计算,我们假设方差是1

E ( ∑ k = 1 n ( B ( t k ) − B ( t k − 1 ) ) 2 ) = t E(\sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2) = t E(k=1n(B(tk)B(tk1))2)=t

  期望可以转化为时间的累加和,并且最终得到期望是t

  然后我们求方差。如果我们能够证明方差是0,那么这个二次变差就是个确定值,即为期望t

V a r ( ∑ k = 1 n ( B ( t k ) − B ( t k − 1 ) ) 2 ) = E ( ∑ k = 1 n ( B ( t k ) − B ( t k − 1 ) ) 2 − t ) 2 = E ( ∑ k = 1 n ( B ( t k ) − B ( t k − 1 ) ) 2 − ( t k − t k − 1 ) ) 2 Var(\sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2) = E(\sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2 - t)^2 \\ = E(\sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2 -(t_k - t_{k-1}))^2 \\ Var(k=1n(B(tk)B(tk1))2)=E(k=1n(B(tk)B(tk1))2t)2=E(k=1n(B(tk)B(tk1))2(tktk1))2
  我们把时间t拆解成为累加和的形式放进去,然后计算整体的平方。累加和的平方可以变成自身平方和以及交叉项平方和的和

= E ( ∑ k = 1 n ( ( B ( t k ) − B ( t k − 1 ) ) 2 − ( t k − t k − 1 ) ) 2 + ∑ i = j ( ( B ( t i ) − B ( t i − 1 ) ) 2 − ( t i − t i − 1 ) ) ( ( B ( j k ) − B ( t j − 1 ) ) 2 − ( t j − t j − 1 ) ) ) = E(\sum_{k=1}^n( (B(t_k) - B(t_{k-1}))^2 -(t_k - t_{k-1}))^2+\sum_{i \cancel = j}( (B(t_i) - B(t_{i-1}))^2 -(t_i - t_{i-1}))( (B(j_k) - B(t_{j-1}))^2 -(t_j - t_{j-1}))) =E(k=1n((B(tk)B(tk1))2(tktk1))2+i= j((B(ti)B(ti1))2(titi1))((B(jk)B(tj1))2(tjtj1)))

  我们可以分析一下后面的交叉项,由于交叉项的随机性都在布朗运动上,并且这是布朗运动的增量的期望,由于布朗运动的增量是独立的,因此可以拆开两部分进行计算。

∑ i = j E ( ( B ( t i ) − B ( t i − 1 ) ) 2 − ( t i − t i − 1 ) ) ( ( B ( j k ) − B ( t j − 1 ) ) 2 − ( t j − t j − 1 ) ) = ∑ i = j E ( ( B ( t i ) − B ( t i − 1 ) ) 2 − ( t i − t i − 1 ) ) E ( ( B ( j k ) − B ( t j − 1 ) ) 2 − ( t j − t j − 1 ) ) = ∑ i = j ( E ( ( B ( t i ) − B ( t i − 1 ) ) 2 ) − ( t i − t i − 1 ) ) ( E ( ( B ( t j ) − B ( t j − 1 ) ) 2 ) − ( t j − t j − 1 ) ) = ∑ i = j ( ( t i − t i − 1 ) − ( t i − t i − 1 ) ) ( ( t j − t j − 1 ) − ( t j − t j − 1 ) ) = 0 \sum_{i \cancel = j}E( (B(t_i) - B(t_{i-1}))^2 -(t_i - t_{i-1}))( (B(j_k) - B(t_{j-1}))^2 -(t_j - t_{j-1})) \\ = \sum_{i \cancel = j} E( (B(t_i) - B(t_{i-1}))^2 -(t_i - t_{i-1})) E( (B(j_k) - B(t_{j-1}))^2 -(t_j - t_{j-1})) \\ = \sum_{i \cancel = j} (E((B(t_i) - B(t_{i-1}))^2) - (t_i - t_{i-1})) (E((B(t_j) - B(t_{j-1}))^2) - (t_j - t_{j-1})) \\ = \sum_{i \cancel = j}((t_i - t_{i-1}) - (t_i - t_{i-1}))((t_j - t_{j-1})-(t_j - t_{j-1})) = 0 i= jE((B(ti)B(ti1))2(titi1))((B(jk)B(tj1))2(tjtj1))=i= jE((B(ti)B(ti1))2(titi1))E((B(jk)B(tj1))2(tjtj1))=i= j(E((B(ti)B(ti1))2)(titi1))(E((B(tj)B(tj1))2)(tjtj1))=i= j((titi1)(titi1))((tjtj1)(tjtj1))=0

  我们可以得到交叉项是0

  我们继续计算前面的一项

V a r ( ∑ k = 1 n ( B ( t k ) − B ( t k − 1 ) ) 2 ) = E ( ∑ k = 1 n ( ( B ( t k ) − B ( t k − 1 ) ) 2 − ( t k − t k − 1 ) ) 2 ) = ∑ k = 1 n E [ ( ( B ( t k ) − B ( t k − 1 ) ) 2 − ( t k − t k − 1 ) ) 2 ] = ∑ k = 1 n E [ ( B ( t k ) − B ( t k − 1 ) ) 4 ] − 2 E [ ( B ( t k ) − B ( t k − 1 ) ) 2 ( t k − t k − 1 ) ] + E [ ( t k − t k − 1 ) ) 2 ] Var(\sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2) = E(\sum_{k=1}^n( (B(t_k) - B(t_{k-1}))^2 -(t_k - t_{k-1}))^2) \\ = \sum_{k=1}^n E[((B(t_k) - B(t_{k-1}))^2 -(t_k - t_{k-1}))^2] \\ = \sum_{k=1}^n E[(B(t_k) - B(t_{k-1}))^4] - 2E[(B(t_k) - B(t_{k-1}))^2(t_k - t_{k-1})] +E[(t_k - t_{k-1}))^2] Var(k=1n(B(tk)B(tk1))2)=E(k=1n((B(tk)B(tk1))2(tktk1))2)=k=1nE[((B(tk)B(tk1))2(tktk1))2]=k=1nE[(B(tk)B(tk1))4]2E[(B(tk)B(tk1))2(tktk1)]+E[(tktk1))2]

  前面是高斯的高阶矩计算

E ( Z ( t ) k ) = ( k − 1 ) ! ! σ k E(Z(t)^k) = (k-1)!! \sigma^k E(Z(t)k)=(k1)!!σk

  故

E [ ( B ( t k ) − B ( t k − 1 ) ) 4 ] = 3 ( t k − t k − 1 ) 2 σ 4 = 3 ( t k − t k − 1 ) 2 E [ ( B ( t k ) − B ( t k − 1 ) ) 2 ( t k − t k − 1 ) ] = E [ ( B ( t k ) − B ( t k − 1 ) ) 2 ] ( t k − t k − 1 ) = ( t k − t k − 1 ) 2 σ 2 = ( t k − t k − 1 ) 2 E[(B(t_k) - B(t_{k-1}))^4] = 3(t_k - t_{k-1})^2\sigma^4 = 3(t_k - t_{k-1})^2 \\ E[(B(t_k) - B(t_{k-1}))^2(t_k - t_{k-1})] = E[(B(t_k) - B(t_{k-1}))^2](t_k - t_{k-1}) =(t_k - t_{k-1})^2 \sigma^2 = (t_k - t_{k-1})^2 E[(B(tk)B(tk1))4]=3(tktk1)2σ4=3(tktk1)2E[(B(tk)B(tk1))2(tktk1)]=E[(B(tk)B(tk1))2](tktk1)=(tktk1)2σ2=(tktk1)2

  原式子可以表示为

V a r ( ∑ k = 1 n ( B ( t k ) − B ( t k − 1 ) ) 2 ) = ∑ k = 1 n 3 ( t k − t k − 1 ) 2 − 2 ( t k − t k − 1 ) 2 + ( t k − t k − 1 ) 2 = 2 ∑ k = 1 n ( t k − t k − 1 ) 2 Var(\sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2) = \sum_{k=1}^n 3(t_k - t_{k-1})^2 - 2(t_k - t_{k-1})^2 + (t_k - t_{k-1})^2 \\ = 2\sum_{k=1}^n (t_k - t_{k-1})^2 Var(k=1n(B(tk)B(tk1))2)=k=1n3(tktk1)22(tktk1)2+(tktk1)2=2k=1n(tktk1)2

  然后我们可以通过夹逼定理计算这个式子的极限

  计算下限
l i m n → ∞ 2 ∑ k = 1 n ( t k − t k − 1 ) 2 > 0 lim_{n \rightarrow \infty}2\sum_{k=1}^n (t_k - t_{k-1})^2 >0 \\ limn2k=1n(tktk1)2>0

  计算上限

  当我们不断的取更多的n的时候,相当于任取的两个时刻的时间差就会无限变小,所以两个时刻的差最终会趋近于0
l i m n → ∞ 2 ∑ k = 1 n ( t k − t k − 1 ) 2 < l i m n → ∞ 2 m a x ( ( t k − t k − 1 ) ) ∑ k = 1 n ( t k − t k − 1 ) = 0 ∗ t = 0 lim_{n \rightarrow \infty}2\sum_{k=1}^n (t_k - t_{k-1})^2 < lim_{n \rightarrow \infty}2max((t_k-t_{k-1}))\sum_{k=1}^n (t_k - t_{k-1}) = 0*t = 0 limn2k=1n(tktk1)2<limn2max((tktk1))k=1n(tktk1)=0t=0

  由夹逼定理,这个式子的极限就是0

l i m n → ∞ V a r ( ∑ k = 1 n ( B ( t k ) − B ( t k − 1 ) ) 2 ) = 0 lim_{n \rightarrow \infty}Var(\sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2) = 0 limnVar(k=1n(B(tk)B(tk1))2)=0

  由于二次变差均值为t,方差为0,最终就可以得到这个式子具有确定值t

4. 伊藤微积分

4.1 布朗运动的微分

  下面我们研究一个函数,依赖于时间和布朗运动两个参数

f ( t , B ( t ) ) f(t,B(t)) f(t,B(t))

  如果我们想求这个函数的微分,怎么求?

  如果我们直接按照确定性方程的求导方法,会得到什么呢?
d f ( t , B ( t ) ) = ∂ f ∂ t d t + ∂ f ∂ B d B ( t ) df(t,B(t)) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial B} dB(t) df(t,B(t))=tfdt+BfdB(t)

  看似是对的,其实不然,我们可以分析一下

  表示一下布朗运动的导数

B ( t ) ∼ N ( 0 , σ 2 t ) d B ( t ) = B ( t + d t ) − B ( t ) ∼ N ( 0 , σ 2 d t ) B(t) \sim N(0,\sigma^2 t) \\ dB(t) = B(t +dt) -B(t) \sim N(0,\sigma^2 dt) B(t)N(0,σ2t)dB(t)=B(t+dt)B(t)N(0,σ2dt)

  根据高斯分布的性质,可以得到

E ( d B ( t ) ) 2 = σ 2 d t E(dB(t) )^2 = \sigma^2 dt E(dB(t))2=σ2dt

  因此,我们可以发现,布朗运动微分的平方与t的微分是同阶的,也就是布朗运动得到微分是半阶dt

( d B ( t ) ) 2 ∼ d t ⇒ d B ( t ) ∼ d t (dB(t))^2 \sim dt \\ \Rightarrow dB(t) \sim \sqrt{dt} (dB(t))2dtdB(t)dt

  这样的话,我们再看我们的微分,就感觉不对了。首先看微分的定义,微分是求函数自变量和因变量之间的变化率。我们希望用简单的线性变化去描述局部的关系。因此,微分得到的结果应该是df和dt之间的一种一阶微分关系,这里得到的df与dB的导数,并没有得到df与dt的一阶关系,因此,我们这个求导用的泰勒展开,还需要再来一阶才行。
d f ( t , B ( t ) ) = ∂ f ∂ t d t + ∂ f ∂ B d B ( t ) x df(t,B(t)) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial B} dB(t) \quad \text{x} df(t,B(t))=tfdt+BfdB(t)x
d f ( t , B ( t ) ) = ∂ f ∂ t d t + ∂ f ∂ B d B ( t ) + 1 2 ∂ 2 f ∂ B 2 ( d B ( t ) ) 2 v df(t,B(t)) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial B} dB(t) +\frac{1}{2} \frac{\partial^2f}{\partial B^2}(dB(t))^2 \quad \text{v} df(t,B(t))=tfdt+BfdB(t)+21B22f(dB(t))2v

  得到的这个结果就叫做伊藤公式

Ito Formula d f ( t , B ( t ) ) = ∂ f ∂ t d t + ∂ f ∂ B d B ( t ) + 1 2 ∂ 2 f ∂ B 2 ( d B ( t ) ) 2 \text{Ito Formula} \\ df(t,B(t)) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial B} dB(t) +\frac{1}{2} \frac{\partial^2f}{\partial B^2}(dB(t))^2 Ito Formuladf(t,B(t))=tfdt+BfdB(t)+21B22f(dB(t))2

  伊藤公式告诉我们,对随机过程求微分,我们需要考虑更多的东西,因为这和确定性的微分并不是一样的。


4.2 布朗运动的积分

  我们可以再来看看布朗运动的积分

∫ 0 1 B ( t ) d B ( t ) = 1 2 d B 2 ( t ) x \int_0^1 B(t) dB(t) = \frac{1}{2} d B^2(t) \quad \text{x} 01B(t)dB(t)=21dB2(t)x

  这个式子怎么求积分呢?显然,直接把B(t)提出来并且把0和1代入是肯定不对的,因为如果我们这么做,我们就默认下面的微分成立了,实际上并不对。

1 2 d B 2 ( t ) = B ( t ) d B ( t ) x \frac{1}{2} d B^2(t)= B(t) dB(t) \quad \text{x} 21dB2(t)=B(t)dB(t)x

  我们对d2B(t)用伊藤公式求一下微分,实际看看展开如何。

1 2 d B 2 ( t ) = B ( t ) d B ( t ) + 1 2 d t \frac{1}{2} d B^2(t) = B(t)dB(t) + \frac{1}{2} dt 21dB2(t)=B(t)dB(t)+21dt

  于是我们就得到了一个正确的原函数。

B ( t ) d B ( t ) = 1 2 d B 2 ( t ) − 1 2 d t B(t)dB(t) = \frac{1}{2} d B^2(t) - \frac{1}{2} dt B(t)dB(t)=21dB2(t)21dt

  所以,我们的积分可以表示为

∫ 0 1 B ( t ) d B ( t ) = ∫ 0 1 1 2 d B 2 ( t ) − 1 2 d t = ( 1 2 B 2 ( t ) − 1 2 t ) ∣ 0 1 \int_0^1 B(t) dB(t) = \int_0^1\frac{1}{2} d B^2(t) - \frac{1}{2} dt \\ = (\frac{1}{2}B^2(t) - \frac{1}{2}t)|_0^1 01B(t)dB(t)=0121dB2(t)21dt=(21B2(t)21t)01

  这就是随机微分方程,随机微分方程的主要工作是由伊藤清做的

Stochastic Calculus \text{Stochastic Calculus} Stochastic Calculus

4.3 期权定价问题

Option Pricing \text{Option Pricing} Option Pricing

  期权定价问题是布朗运动和伊藤公式的典型应用,下面进行简要介绍。

4.3.1 布朗运动与金融建模

  由于布朗运动具有不可预测性,经常被用来对股票价格进行建模,这个工作是1900年由bacheliar做的。其导师是庞加莱

B ( t ) Brown Motion →  Stock Price Modeling(Bacheliar) B(t) \quad \text{Brown Motion} \rightarrow \text{ Stock Price Modeling(Bacheliar)} B(t)Brown Motion Stock Price Modeling(Bacheliar)

  但是这个事情被人诟病,因为布朗运动有时候是负的,但是股票价格不可能是负的,因此,人们提出了新的随机过程来进行描述,把布朗运动放到了指数里面,并做了进一步的改进

S ( t ) = e x p ( B ( t ) ) → e x p ( u t + σ 2 B ( t ) ) S(t) = exp(B(t)) \rightarrow exp(ut +\sigma^2B(t)) S(t)=exp(B(t))exp(ut+σ2B(t))

  这个模型包括两部分,一部分是短时的变化趋势,另外一部分是布朗运动带来的价格波动。这个模型被叫做几何布朗运动,是1930年金融学奠基人萨缪尔森做出的工作。前面增加了一部分确定的线性增长因素是由于,金融市场确实有时候增长是有些线性的。

Geometric Brown Motion → Samuelson \text{Geometric Brown Motion} \rightarrow \text{Samuelson} Geometric Brown MotionSamuelson

在这里插入图片描述


4.3.2 期权与对冲问题

  然后我们介绍一下,什么是期权。

  我们直接买卖股票的风险是非常高的,因为我们没有办法控制股票的涨落。

  如果我们去买一个期权,就不一样了。期权是买卖股票的权利,在一个固定时间去买卖股票的权利。买卖股票有两种形式,一种是股价5块钱,然后花了五块钱去买了股票。另一种是,别人手里有5块钱的股票,我们不直接买股票,而是买他股票的权利。我们决定明天买他的股票,因为股票明可能会涨。我们约定明天用5.2来买这个股票。然后我们花1毛钱来买这个权利,就是明天花5.2来买这个股票的权利。现在,对于卖者来说,今天已经赚了1毛钱,如果明天股票跌了,还是能以5.2卖出。但是如果明天股票涨了,可能就会亏一点。对于买者来说,也还好,如果明天股票涨价到了8块,我们可以使用购买的权利,用5.2来买股票。但是如果明天股票跌了,我们可以放弃期权,因为买方有权决定是否要这个期权。因此,买家顶多就损失1毛钱。

  因此,期权是一个依赖于购买时间和股票价格的二元函数,时间越久,期权会越贵,股票价格越高,期权会越贵。

V ( t , S ( t ) ) V(t,S(t)) V(t,S(t))

  因此,期权是一个很好的规避风险的工具,能够帮助抗拒风险。我们可以进一步降低风险,就是进行资产组合。做资产组合是能够做对冲的。
H e d g i n g Hedging Hedging

  接着上面的例子。我们要买期权,要付那1毛钱,这一毛钱哪里来? 这个钱应该通过卖掉手里的股票来付。如果没有的话,借股票来卖,这是一种对冲。对冲的意思就是要把风险降下来。就是不管股票涨还是跌,我们的损失都不会很大。

  卖股票买期权就能够达到这个目的。如果股票涨了,这个时候卖股票就吃亏了,但是买期权的地方就会赚。如果股票跌了,买期权就亏了,可是我们就实现了股票高点的套现。

  金融里面,最重要的不是赚钱,而是活下去,不出局。因此金融的设计理念就是规避风险。因此,我们要做资产组合,资产应该包括期权和卖掉的股票,其中st是股票,因为卖掉是负资产。得到的就是总资产。

P ( t ) = V ( t , S ( t ) ) − α S ( t ) P(t) = V(t,S(t)) - \alpha S(t) P(t)=V(t,S(t))αS(t)

4.3.3 期权定价

  然后,我们就可以来研究,期权价格到底要定多少,可以规避风险。有一个基本原理,总资产的微分应该等于等额的资产存到银行里面获得的收益。

S ( t ) = e x p ( u t + σ 2 B ( t ) ) P ( t ) = V ( t , S ( t ) ) − α S ( t ) d P ( t ) = r P ( t ) d t r  : Interest Rate S(t) = exp(ut +\sigma^2B(t))\\ P(t) = V(t,S(t)) - \alpha S(t) \\ dP(t) = rP(t)dt \quad r \text{ : Interest Rate} S(t)=exp(ut+σ2B(t))P(t)=V(t,S(t))αS(t)dP(t)=rP(t)dtr : Interest Rate

  首先,我们要对股票价格求一下微分

d S = S ( μ d t + σ 2 d B ( t ) + 1 2 σ 4 d t ) dS = S(\mu dt + \sigma^2dB(t) + \frac{1}{2} \sigma^4 dt) dS=S(μdt+σ2dB(t)+21σ4dt)

  我们发现dS中是保留有一阶的dB的

  我们再来求资产的微分

d P ( t ) = d V + α d S = ∂ V ∂ t d t + ∂ V ∂ S d S + 1 2 ∂ 2 V ∂ S 2 d S 2 + α d S dP(t) = dV +\alpha dS = \frac{\partial V}{\partial t} dt + \frac{\partial V}{\partial S} dS + \frac{1}{2}\frac{\partial^2 V}{\partial S^2} dS^2 + \alpha dS dP(t)=dV+αdS=tVdt+SVdS+21S22VdS2+αdS

  我们注意到,V对S的求导也求到了两阶,这是因为,如果我们只求到一阶的S,有一个一阶的dB,阶次不够,因此仍然需要再求一阶

  我们研究一下dS2是什么

d S 2 = ( S ( μ d t + σ 2 d B ( t ) + 1 2 σ 4 d t ) ) 2 = σ 4 S 2 d t dS^2 = (S(\mu dt + \sigma^2dB(t) + \frac{1}{2} \sigma^4 dt))^2 = \sigma^4S^2 dt dS2=(S(μdt+σ2dB(t)+21σ4dt))2=σ4S2dt

  得到这个结果主要是看微元的阶次,只有dB的平方得到的是一阶的t,其他的两两相乘阶次都比t高,就不要了

  因此,可以得到期权的微分
d P ( t ) = d V + α d S = ∂ V ∂ t d t + ∂ V ∂ S d S + 1 2 ∂ 2 V ∂ S 2 σ 4 S 2 d t + α d S dP(t) = dV +\alpha dS = \frac{\partial V}{\partial t} dt + \frac{\partial V}{\partial S} dS + \frac{1}{2}\frac{\partial^2 V}{\partial S^2} \sigma^4S^2 dt+ \alpha dS dP(t)=dV+αdS=tVdt+SVdS+21S22Vσ4S2dt+αdS

  另外,期权的微分应该等于银行利率

d P ( t ) = r P ( t ) d t = r ( V + α S ) d t dP(t) = rP(t)dt = r(V+\alpha S) dt dP(t)=rP(t)dt=r(V+αS)dt

  为了让两边相等,我们要令dS的项为0,只保留dt的项,则

∂ V ∂ S d S + α d S = 0 α = − ∂ V ∂ S \frac{\partial V}{\partial S} dS + \alpha dS = 0 \\ \alpha = - \frac{\partial V}{\partial S} SVdS+αdS=0α=SV

  这个α叫做delta对冲

delta \text{delta} delta

  同时,我们也得到了一个计算期权价格的偏微分方程

∂ V ∂ t + 1 2 σ 4 S 2 ∂ 2 V ∂ S 2 − r V + r S ∂ V ∂ S = 0 \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^4S^2\frac{\partial^2 V}{\partial S^2} - rV + rS\frac{\partial V}{\partial S} =0 tV+21σ4S2S22VrV+rSSV=0

  得到的这个方程叫做

Black-Scholes \text{Black-Scholes} Black-Scholes

  • 7
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值